Silicon Controlled Rectifiers

Reverse Blocking Thyristors

Designed for overvoltage protection in crowbar circuits.

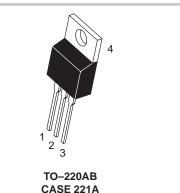
- Glass-Passivated Junctions for Greater Parameter Stability and Reliability
- Center-Gate Geometry for Uniform Current Spreading Enabling High Discharge Current
- Small Rugged, Thermowatt Package Constructed for Low Thermal Resistance and Maximum Power Dissipation and Durability
- High Capacitor Discharge Current, 750 Amps
- Device Marking: Logo, Device Type, e.g., MCR69–2, Date Code

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage ⁽¹⁾ (T _J = -40 to +125°C, Gate Open) MCR69–2 MCR69–3	Vdrm, Vrrm	50 100	Volts
Peak Discharge Current ⁽²⁾	ITM	750	Amps
On-State RMS Current (180° Conduction Angles; T _C = 85°C)	IT(RMS)	25	Amps
Average On-State Current (180° Conduction Angles; T _C = 85°C)	lt(AV)	16	Amps
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave, 60 Hz, T _J = 125°C)	ITSM	300	Amps
Circuit Fusing Considerations (t = 8.3 ms)	l ² t	375	A ² s
Forward Peak Gate Current $(t \le 1.0 \ \mu s, T_C = 85^{\circ}C)$	IGM	2.0	Amps
Forward Peak Gate Power $(t \le 1.0 \ \mu s, T_C = 85^{\circ}C)$	PGM	20	Watts
Forward Average Gate Power (t = 8.3 ms, T_C = 85°C)	PG(AV)	0.5	Watt
Operating Junction Temperature Range	Тј	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C
Mounting Torque	—	8.0	in. lb.

(1) V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

(2) Ratings apply for $t_W = 1$ ms. See Figure 1 for I_{TM} capability for various duration of an exponentially decaying current waveform, t_W is defined as 5 time constants of an exponentially decaying current pulse.



ON Semiconductor

http://onsemi.com

SCRs 25 AMPERES RMS 50 thru 100 VOLTS

STYLE 3

PIN ASSIGNMENT		
1	Cathode	
2	Anode	
3	Gate	
4	Anode	

ORDERING INFORMATION

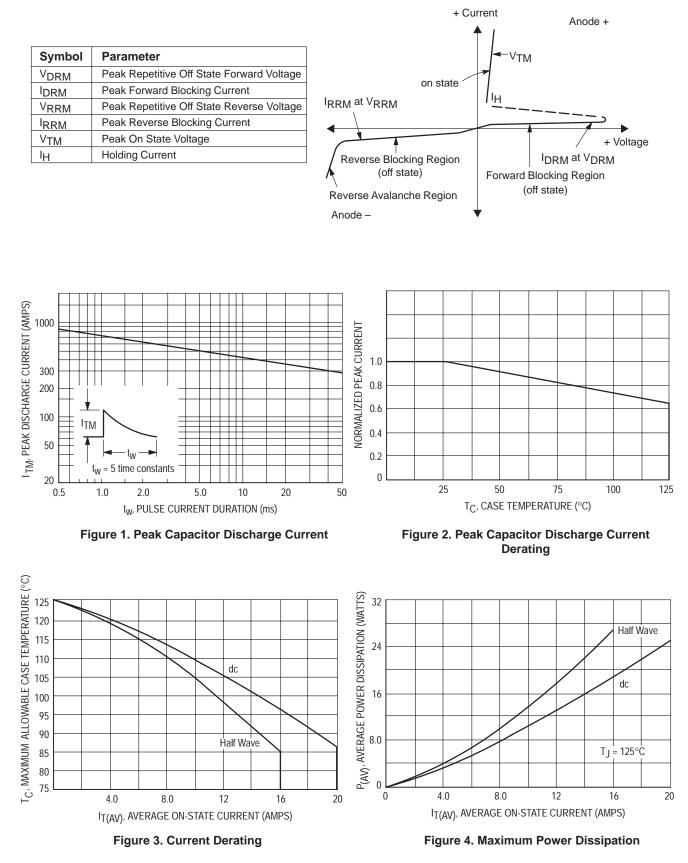
Device	Package	Shipping
MCR69-2	TO220AB	500/Box
MCR69-3	TO220AB	500/Box

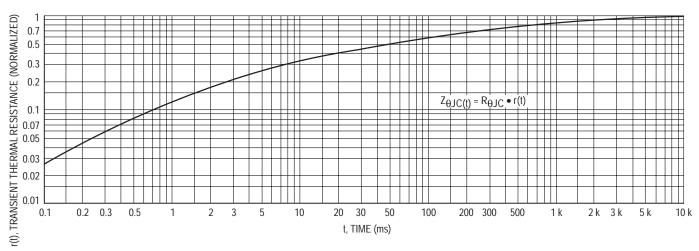
⁽³⁾ Test Conditions: I_G = 150 mA, V_D = Rated V_{DRM}, I_{TM} = Rated Value, T_J = 125°C.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _{θJC}	1.5	°C/W
Thermal Resistance, Junction to Ambient	R _{θJA}	60	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	Т∟	260	°C

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)


Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•	•	•	•	•
Peak Repetitive Forward or Reverse Blocking Current $(V_{AK} = Rated V_{DRM} \text{ or } V_{RRM}, Gate Open)$ $T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$	IDRM, IRRM		_	10 2.0	μA mA
ON CHARACTERISTICS	•	•	•	•	-
Peak Forward On-State Voltage $(I_{TM} = 50 \text{ A})^{(1)}$ $(I_{TM} = 750 \text{ A}, t_W = 1 \text{ ms})^{(2)}$	VTM		 6.0	1.8	Volts
Gate Trigger Current (Continuous dc) $(V_D = 12 \text{ V}, \text{ R}_L = 100 \Omega)$	IGT	2.0	7.0	30	mA
Gate Trigger Voltage (Continuous dc) $(V_D = 12 \text{ V}, \text{ R}_L = 100 \Omega)$	VGT	-	0.65	1.5	Volts
Gate Non–Trigger Voltage ($V_D = 12 \text{ Vdc}, R_L = 100 \Omega, T_J = 125^{\circ}\text{C}$)	VGD	0.2	0.40	—	Volts
Holding Current (V _D = 12 V, Initiating Current = 200 mA, Gate Open)	IН	3.0	15	50	mA
Latching Current ($V_D = 12 \text{ Vdc}, I_G = 150 \text{ mA}$)	ΙL	-	-	60	mA
Gate Controlled Turn-On Time ⁽³⁾ $(V_D = Rated V_{DRM}, I_G = 150 \text{ mA})$ $(I_{TM} = 50 \text{ A Peak})$	^t gt	-	1.0	—	μs
DYNAMIC CHARACTERISTICS					
Critical Rate-of-Rise of Off-State Voltage (V_D = Rated V_{DRM} , Gate Open, Exponential Waveform, T_J = 125°C	dv/dt	10	-	_	V/µs
Critical Rate-of-Rise of On-State Current $I_G = 150 \text{ mA}$ $T_J = 125^{\circ}C$	di/dt	-	-	100	A/μs


(1) Pulse duration \leq 300 µs, duty cycle \leq 2%.

(2) Ratings apply for t_W = 1 ms. See Figure 1 for I_{TM} capability for various durations of an exponentially decaying current waveform. t_W is defined as 5 time constants of an exponentially decaying current pulse.

(3) The gate controlled turn-on time in a crowbar circuit will be influenced by the circuit inductance.

Voltage Current Characteristic of SCR

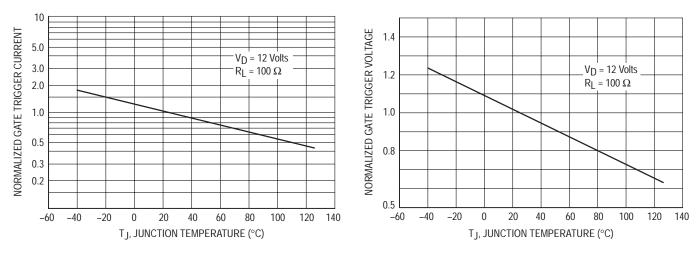


Figure 6. Gate Trigger Current

Figure 7. Gate Trigger Voltage

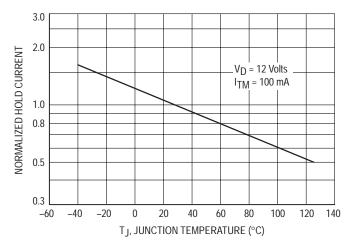
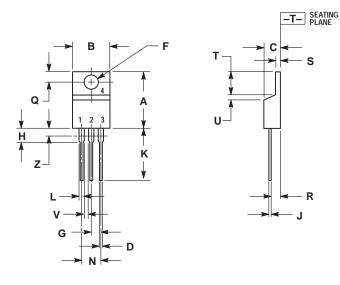



Figure 8. Holding Current

PACKAGE DIMENSIONS

TO-220AB CASE 221A-07 ISSUE Z

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INC	HES	MILLIMETER	
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.014	0.022	0.36	0.55
К	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
Ν	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Ζ		0.080		2.04

http://onsemi.com 5

Notes

Notes

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

- French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com
- English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5740–2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.