#### **Central Office Interface Circuit**

**Preliminary Information** 

#### **Features**

- Loop Start Trunk Interface
- 600 Ohm input impedance
- WWW.DZSC.COM Line state detection outputs:
  - forward loop
  - reverse loop
  - ringing voltage
  - service out
- Transformerless 2W to 4W conversion
- One loop start relay driver
- +/- 5V operation

#### **Applications**

Interface to Central Office for:

- **PABX**
- Key Telephone Systems
- Channel Bank
- Voice Mail
- Terminal Equipment
- **Digital Loop Carrier**
- Optical Multiplexer

ISSUE 3 April 1995 **Ordering Information** 21 Pin SIL Package MH88634K 0°C to 70°C

### Description

The Mitel MH88634K Central Office Trunk Interface circuit provides a complete audio and signalling link between audio switching equipment and a central office. The functions provided by the MH88634K include 2-4 Wire conversion, 600 Ohm input impedance and network balance. The device is fabricated as a thick film hybrid incorporating various technologies for optimum circuit design and very high reliability.

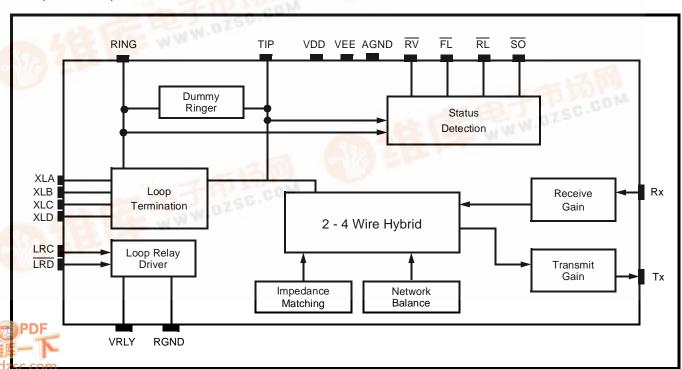



Figure 1 - Functional Block Diagram

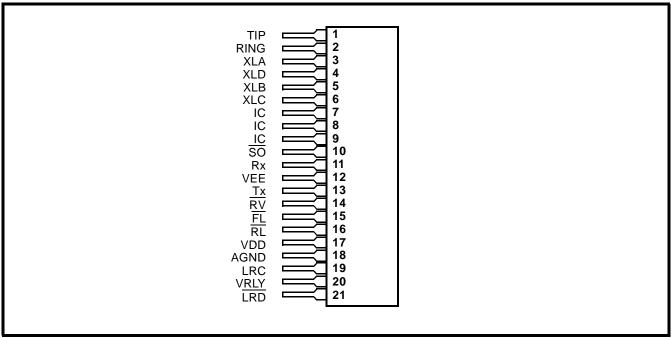



Figure 2 - Pin Connections

## **Pin Description**

| Pin# | Name | Description                                                                                                                                                                                                                                                                             |
|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | TIP  | Tip Lead. Connects to the "Tip" lead of the central office                                                                                                                                                                                                                              |
| 2    | RING | Ring Lead: Connects to the "Ring" lead of the central office                                                                                                                                                                                                                            |
| 3    | XLA  | <b>Loop Relay Contact A:.</b> Connects to XLB through the Loop relay (K1) contacts when the relay is activated. This operates the internal active termination circuitry.                                                                                                                |
| 4    | XLD  | Loop Relay Contact D: See XLC for description                                                                                                                                                                                                                                           |
| 5    | XLB  | Loop Relay Contact B: See XLA for description                                                                                                                                                                                                                                           |
| 6    | XLC  | <b>Loop Relay Contact C:</b> Connects to XLD through the loop relay (K1) contacts when the relay is activated. This operates the internal active termination circuitry.                                                                                                                 |
| 7    | IC   | Internal Connection: This pin is internally connected and must be left open.                                                                                                                                                                                                            |
| 8    | IC   | Internal Connection.: This pin is internally connected and must be left open.                                                                                                                                                                                                           |
| 9    | IC   | Internal Connection: This pin is internally connected and must be left open.                                                                                                                                                                                                            |
| 10   | SO   | Service Out Detect (Output). A logic low indicates that the central office "Tip" and "Ring" are out of service.                                                                                                                                                                         |
| 11   | Rx   | Receive (Input): 4-Wire ground (AGND) referenced audio input.                                                                                                                                                                                                                           |
| 12   | VEE  | Negative Supply Voltage5V                                                                                                                                                                                                                                                               |
| 13   | Tx   | Transmit (Output). 4-Wire ground (AGND) referenced audio output.                                                                                                                                                                                                                        |
| 14   | RV   | Ring Voltage Detect (Output). A logic low indicates that ringing voltage is across the Tip and Ring leads. Note that this output toggles at the ringing cadence and not at the ringing frequency.                                                                                       |
| 15   | FL   | Forward Loop Detect (Output). In the on-hook state, a logic low output indicates that forward loop battery is present. In the off-hook state, a logic low indicates that forward loop current is present                                                                                |
| 16   | RL   | Reverse Loop Detect (Output): In the on-hook state, a logic low output indicates that reverse loop battery is present. In the off-hook state, a logic low output indicates that reverse loop current is present. Reverse loop refers to the Tip lead negative respect to the Ring lead. |

#### **Pin Description (Continued)**

| Pin # | Name | Description                                                                                                                                                                                                                            |
|-------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17    | VDD  | Positive Supply Voltage:. +5V                                                                                                                                                                                                          |
| 18    | AGND | Analog Ground: 4-wire ground. Connected to system ground.                                                                                                                                                                              |
| 19    | LRC  | <b>Loop Relay Control (Input):</b> A logic high activates the Loop Relay Driver output (LRD). The Loop Relay activates internal circuitry which provides a DC termination across Tip and Ring. Used for line seizure and dial pulsing. |
| 20    | VRLY | Relay Positive Supply Voltage: Typically +5V. Connects to the relay coil and the relay supply voltage                                                                                                                                  |
| 21    | LRD  | <b>Loop Relay Drive (Output):</b> Connects to the Loop Relay Coil. A logic low activates the relay. An internal clamp diode from VRLY to LRD is provided.                                                                              |

### **Functional Description**

The MH88634K is a COIC (Central Office Interface Circuit) used to interface the Central Office 2-Wire Analog Trunks. The COIC provides a Loop Start interface function.

Incoming analog (voiceband) signals from the 2-Wire circuit are applied differentially across Tip and Ring, the output of which is applied to the 2 to 4 wire converter with a fixed gain to the Tx output.

The outgoing analog signals are applied to Rx. The audio signals undergo 4 to 2 wire conversion with a fixed gain, and are differentially applied to Tip and Ring.

#### **DC Loop Termination**

The line is provided with an active DC load termination when a logic high is applied to the LRC (Loop Start Relay) input. The termination is similar to a DC resistance of less than 275 ohms. An external relay is used to activate internal circuitry which switches the termination in and out of the loop. This is used for both seizing the line as well as generating dial pulses.

#### **Supervision Features**

The supervision circuitry provides the signalling status outputs. The ringing voltage, forward current, reverse current and Service Out. Ringing Voltage detect - the RV output provides a logic low when ringing voltage is detected. This sector includes a ringing filter which ensures that the output toggles at the ringing cadence and not at the ringing frequency. Typically, this output goes low 50ms after the ringing voltage is applied and remains low for 50ms after ringing voltage is removed.

Forward loop and reverse loop detect - the  $\overline{FL}$  output provides a logic low when either forward loop battery or forward loop current is detected (ring lead voltage negative with respect to tip lead). The  $\overline{RL}$  output provides a logic low when either reverse loop battery or reverse loop current is detected (tip lead voltage negative with respect to ring lead).

Service Out detect - the  $\overline{SO}$  output will detect the loop current between 5mA to 10.13 mA as "out of service" during the DC termination. The Central Office applies -48V battery to the line but limits the loop current to this range to indicate the line is out of service.  $\overline{FL}$  and  $\overline{RV}$  outputs will not go low is the loop current is less than 12.5mA.

#### Line Impedance

The input impedance of the MH88634K is 600 ohms. The network balance is also set at 600 ohm to maximize the Transhybrid Balance.

#### **Transmit and Receive Gain**

Transmit Gain (Tip-Ring) is set at 0dB and Receive Gain (Rx to Tip-Ring) is set at -2dB.

# DC Electrical Characteristics<sup>†</sup>

|   |                      | Characteristics                        | Sym             | Min | Тур* | Max | Units | Test Conditions                |
|---|----------------------|----------------------------------------|-----------------|-----|------|-----|-------|--------------------------------|
| 1 |                      | Supply Current                         | I <sub>DD</sub> | 0.5 |      | 13  | mA    |                                |
|   |                      |                                        | I <sub>EE</sub> | 0.5 |      | 13  | mA    |                                |
| 2 |                      | Power Consumption                      | PC              |     |      | 137 | mW    | V <sub>BAT</sub> not connected |
| 3 | 닏                    | Low Level Output Voltage               | $V_{OL}$        |     |      | 0.5 | V     | $I_{OL} = 4mA$                 |
|   | FL<br>RL<br>SO<br>RV | High Level Output Voltage              | V <sub>OH</sub> | 3.7 |      |     | V     | I <sub>OH</sub> = 100μA        |
| 4 | LRD                  | Sink Current, Relay to V <sub>DD</sub> | I <sub>OL</sub> | 100 |      |     | mA    | V <sub>OL</sub> = 0.35V not    |
|   |                      | Clamp Diode Current                    | I <sub>CD</sub> | 150 |      |     | mA    | continuous                     |
| 5 | LRC                  | Low Level Input Voltage                | $V_{IL}$        |     |      | 8.0 | V     |                                |
|   |                      | High Level Input Voltage               | $V_{IH}$        | 2.0 |      |     | V     |                                |
| 6 |                      | High Level Input Current               | I <sub>IH</sub> |     |      | 40  | μΑ    | V <sub>IH</sub> = 5.0V         |
|   |                      | Low Level Input Current                | Ι <sub>ΙL</sub> |     |      | 40  | μA    |                                |

Absolute Maximum Ratings\* Voltages are with respect to AGND

|   | Parameters            | Sym            | Min  | Max  | Units |
|---|-----------------------|----------------|------|------|-------|
| 1 | DC Supply Voltages    | $V_{BAT}$      | 0    | -60  | V     |
|   |                       | $V_{DD}$       | -0.3 | 7    | V     |
|   |                       | $V_{EE}$       | 0.3  | -7   | V     |
| 2 | DC Ring Relay Voltage | $V_{VRLY}$     | -0.3 | 7    | V     |
| 3 | Storage Temperature   | T <sub>S</sub> | -55  | +125 | °C    |

Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

**Recommended Operating Conditions** 

|   | Parameters            | Symbol          | Min   | Тур* | Max   | Units | Comments |
|---|-----------------------|-----------------|-------|------|-------|-------|----------|
| 1 | DC Supply Voltages    | $V_{DD}$        | 4.75  | 5.0  | 5.25  | V     |          |
|   |                       | $V_{EE}$        | -4.75 | -5.0 | -5.25 | V     |          |
| 2 | DC Ring Relay Voltage | $V_{VRLY}$      |       | 5.0  | 15    | V     |          |
| 3 | Operating Temperature | T <sub>OP</sub> | 0     |      | 70    | °C    |          |

<sup>\*</sup> Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

Typical figures are at 25°C with nominally +5V supplies and are for design use only.
 DC Electrical Characteristics are over recommended operating conditions unless otherwise stated.

# **Loop Electrical Characteristics\***

|    | Characteristics                                                   | Symbol | Min          | Typ <sup>†</sup> | Max        | Units     | Test Conditions                                          |
|----|-------------------------------------------------------------------|--------|--------------|------------------|------------|-----------|----------------------------------------------------------|
| 1  | Ringing Voltage                                                   | VR     | 40           | 90               | 130        | $V_{rms}$ |                                                          |
| 2  | Ringing Frequency                                                 |        | 16           | 20               | 33         | Hz        |                                                          |
| 3  | Ringer Equivalence number                                         | REN    | 0.5          | 1                | 2          |           | Dummy Ringer is 17K in series with 330nF. Type A ringing |
| 4  | Operating Loop Current                                            |        | 15           |                  | 70         | mA        |                                                          |
| 5  | Operating Loop Resistance                                         |        | 0            |                  | 1800       | Ω         | @ 20mA, -42.5V                                           |
| 6  | Off-Hook DC Resistance                                            |        |              | 250              | 275        | Ω         | @ 20mA                                                   |
| 7  | Leakage Current<br>(Tip-Ring to AGND)                             |        |              |                  | 10         | mA        | @ 1000Vac<br>50 or 60 Hz                                 |
| 8  | FL Threshold<br>Tip-Ring (On-hook)<br>Tip-ring Current (Off-Hook) |        | +30<br>12.5  |                  | +40<br>15  | Vdc<br>mA | $\frac{\overline{LRC} = 0v}{LRC = 5V}$                   |
| 9  | RL Threshold<br>Tip-Ring (On-Hook)<br>Tip-Ring current (Off-Hook) |        | -30<br>-12.5 |                  | -40<br>-15 | Vdc<br>mA | $\frac{\overline{LRC} = 0v}{\overline{LRC} = 5V}$        |
| 10 | SO Detect                                                         |        | -10.13       |                  | -12.4      | mA        | V <sub>BAT</sub> = -48V                                  |

Loop Electrical Characteristics are over recommended operating conditions unless otherwise stated.
 † Typical figures are at 25°C and are for design aid only.

# **AC Electrical Characteristics \***

| Characteristics                                                                | Sym                                                                                                                                                                                                                                                                                                                                                                                                               | Min                                                                                                                                                                                                                                                                                                                                                                                                                                  | Typ <sup>†</sup>                                       | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test Conditions                                        |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 2-wire Input Impedance                                                         | Z <sub>in</sub>                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      | 600                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
| Return Loss at 2-wire (Z <sub>in</sub> = Ref = 600)                            | RL                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200-3400 Hz                                            |
| Longitudinal to Metallic<br>Balance                                            |                                                                                                                                                                                                                                                                                                                                                                                                                   | 58<br>58<br>53                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200Hz<br>1000Hz<br>3.4kHz                              |
| Transhybrid Loss                                                               | THL                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200-3400Hz                                             |
| Gain (voltage) 2 wire to Tx                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.25                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                      | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1024Hz                                                 |
| Gain (Voltage)<br>Rx to 2 wire                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.25                                                                                                                                                                                                                                                                                                                                                                                                                                | -2                                                     | -1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Spec Freq                                              |
| Input impedance at Rx                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | kΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |
| Output impedance at Tx                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
| Signal Overload Level<br>at 2-wire output<br>at Tx                             |                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.0<br>0.95                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dBm<br>Vrms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | % THD ≤ 5%<br>Ref 600Ω @ 20mA                          |
| Total Harmonic Distortion at 2-wire at Tx                                      | THD                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        | 1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Input 0.5V, 1kHz @ Rx<br>Input 0.5V, 1kHz @ Tip-Ring   |
| Idle Channel Noise<br>at 2-Wire<br>at Tx                                       | NC                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        | 13<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dBrnc<br>dBrnc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
| Power Supply Rejection Ratio at 2-wire and Tx  V <sub>DD</sub> V <sub>EE</sub> | PSRR                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30<br>30                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dB<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ripple 0.1V, 1kHz                                      |
|                                                                                | 2-wire Input Impedance Return Loss at 2-wire (Z <sub>in</sub> = Ref = 600) Longitudinal to Metallic Balance  Transhybrid Loss Gain (voltage) 2 wire to Tx Gain (Voltage) Rx to 2 wire Input impedance at Rx Output impedance at Tx Signal Overload Level at 2-wire output at Tx  Total Harmonic Distortion at 2-wire at Tx Idle Channel Noise at 2-Wire at Tx  Power Supply Rejection Ratio at 2-wire and Tx  VDD | 2-wire Input Impedance  Return Loss at 2-wire (Z <sub>in</sub> = Ref = 600)  Longitudinal to Metallic Balance  Transhybrid Loss  THL  Gain (voltage) 2 wire to Tx  Gain (Voltage) Rx to 2 wire  Input impedance at Rx  Output impedance at Tx  Signal Overload Level at 2-wire output at Tx  Total Harmonic Distortion at 2-wire at Tx  Idle Channel Noise at 2-Wire at Tx  Power Supply Rejection Ratio at 2-wire and Tx  VDD  PSRR | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 2-wire Input Impedance Z <sub>in</sub> 600  Return Loss at 2-wire (Z <sub>in</sub> = Ref = 600)  Longitudinal to Metallic Balance 58  Transhybrid Loss THL 20  Gain (voltage) 2 wire to Tx -0.25 0  Gain (Voltage) -2.25 -2  Rx to 2 wire Input impedance at Rx 10  Output impedance at Tx 5  Signal Overload Level at 2-wire output at Tx 0.95  Total Harmonic Distortion at 2-wire at Tx Idle Channel Noise at Tx 1x  Power Supply Rejection Ratio at 2-wire and Tx VDD 30  PSRR 30  August 20  RL 20  600  RL 20  August 20  Aug | 2-wire Input Impedance         Z <sub>in</sub> 600           Return Loss at 2-wire (Z <sub>in</sub> = Ref = 600)         RL         20           Longitudinal to Metallic Balance         58         58           Transhybrid Loss         THL         20           Gain (voltage) 2 wire to Tx         -0.25         0         0.25           Gain (Voltage)         -2.25         -2         -1.75           Rx to 2 wire         10         0         0           Input impedance at Rx         10         0         0           Output impedance at Tx         5         5           Signal Overload Level at 2-wire output at Tx         4.0         4.0         4.0           at Tx         0.95         1.0         1.0           Total Harmonic Distortion at 2-wire at Tx         NC         1.0         1.0           Idle Channel Noise at 2-Wire at Tx         NC         13         13           Power Supply Rejection Ratio at 2-wire and Tx         PSRR         30 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

<sup>\*</sup> AC Electrical Characteristics are over recommended operating conditions unless otherwise stated. † Typical figures are at 25°C and are for design aid only.

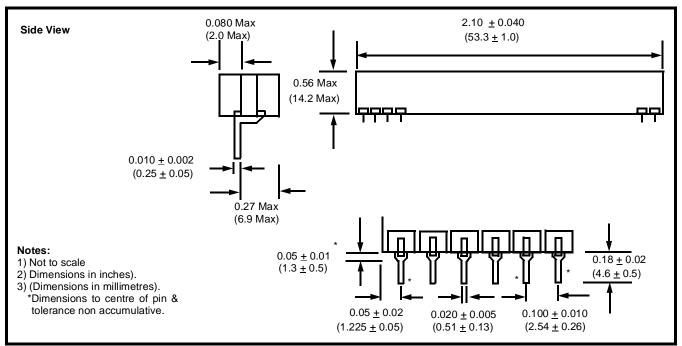



Figure 3 - Mechanical Data

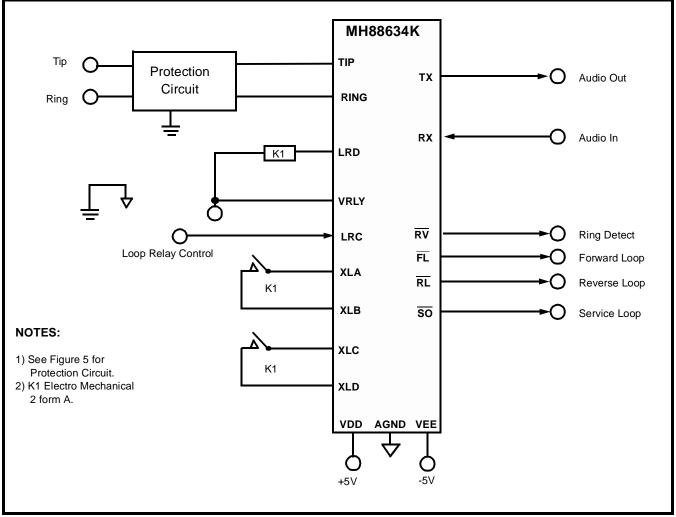



Figure 4 - Typical LS-GS Application Circuit

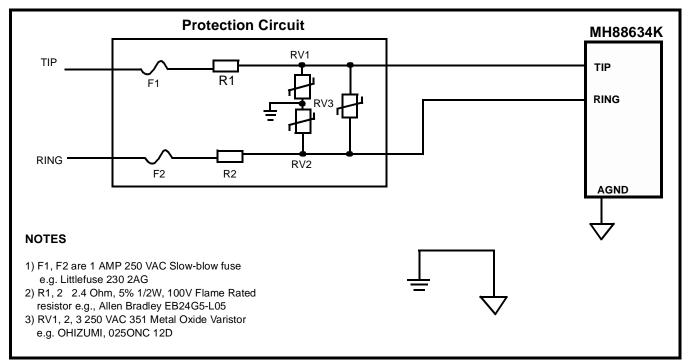



Figure 5 - External Application Circuit

Notes: