
The RF Line **UHF Silicon FET Power Amplifier**

Designed for 7.5 volt UHF power amplifier applications in industrial and commercial equipment primarily for hand portable radios.

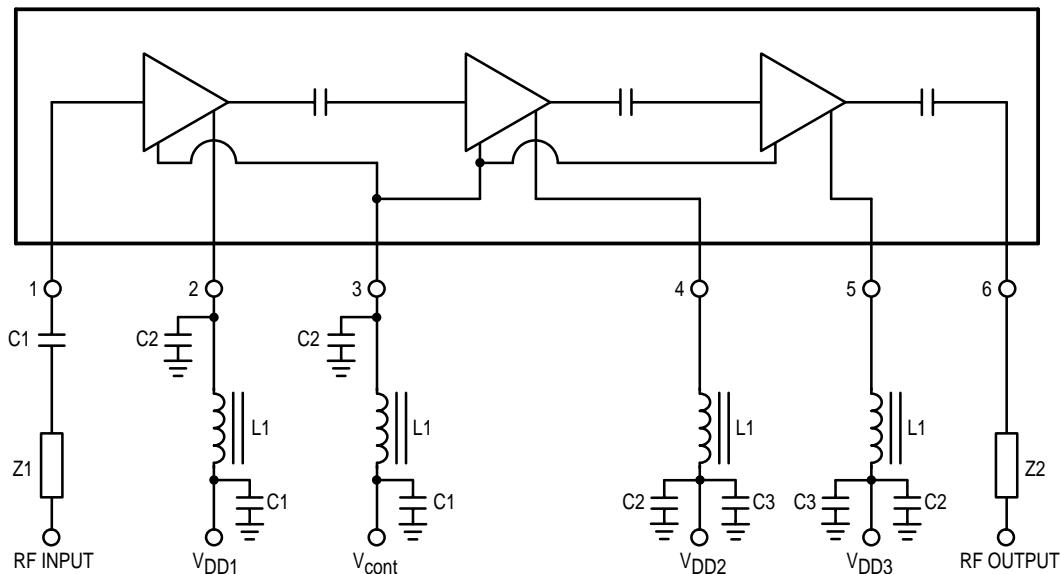
- Specified 7.5 Volt Characteristics:
 - RF Input Power: 1 mW (0 dBm)
 - RF Output Power: 7 W
 - Minimum Gain ($V_{cont} = 7$ V): 38.5 dB
 - Harmonics: -35 dBc Max @ 2 f_0
- Provides Wideband Performance
- Meets European Transient Specification (ET 300 113)
- Epoxy Glass PCB Construction Gives Consistent Performance and Reliability
- 50 Ω Input/Output Impedances
- Guaranteed Stability and Ruggedness

MHW2707A1

**7 W
400–470 MHz
UHF POWER AMPLIFIER**

CASE 301AL-01, STYLE 1

MAXIMUM RATINGS (Flange Temperature = 25°C)


Rating	Symbol	Value	Unit
DC Supply Voltage (Pins 2, 4, 5)	$V_{DD1, 2, 3}$	9	Vdc
DC Control Voltage (Pin 3)	V_{cont}	7	Vdc
RF Input Power	P_{in}	2	mW
RF Output Power ($V_{DD1, 2, 3} = 9$ V)	P_{out}	9	W
Operating Case Temperature Range	T_C	-30 to +80	°C
Storage Temperature Range	T_{stg}	-30 to +80	°C

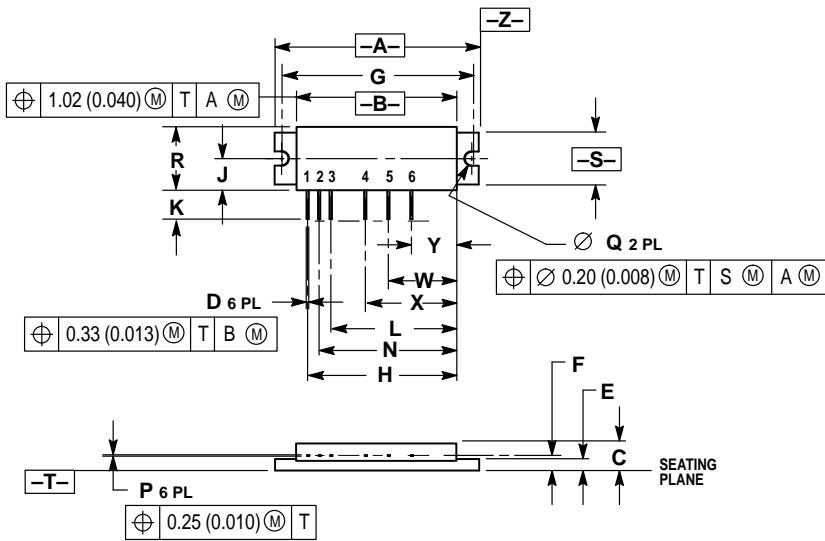
ELECTRICAL CHARACTERISTICS ($V_{DD1} = V_{DD2} = V_{DD3} = 7.5$ Vdc (Pins 2, 4, 5); $T_C = +25^\circ\text{C}$, 50 ohm system unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Frequency Range	BW	400	470	MHz
Control Voltage ($P_{out} = 7$ W; $P_{in} = 1$ mW) (1)	V_{cont}	0	7	Vdc
Quiescent Current ($V_{DD1} = V_{DD2} = V_{DD3} = 7.5$ Vdc; $P_{in} = 0$ mW, $V_{cont} = 0$ Vdc)	—	—	1	mA
Power Gain ($P_{out} = 7$ W, $V_{cont} = 7$ Vdc)	G_p	38.5	—	dB
Efficiency ($P_{out} = 7$ W; $P_{in} = 1$ mW) (1)	η	45	—	%
Harmonics ($P_{out} = 7$ W; $P_{in} = 1$ mW) (1)	$2 f_0$	—	—	-35 dBc
Input VSWR ($P_{out} = 7$ W; $P_{in} = 1$ mW, 50 Ω Ref.) (1)	VSWR _{in}	—	3	—
Control Current ($V_{DD1} = V_{DD2} = V_{DD3} = 7.5$ Vdc; $P_{in} = 1$ mW) (1)	I_{cont}	—	2	mA
Load Mismatch Stress ($V_{DD1} = V_{DD2} = V_{DD3} = 9$ Vdc; $P_{in} = 2$ mW; $P_{out} = 9$ W; Load VSWR = 10:1, All Phase Angles at Frequency of Test) (1)	Ψ	No Degradation in Output Power Before & After Test		
Stability ($P_{in} = 1\text{--}2$ mW; $V_{DD1} = V_{DD2} = V_{DD3} = 6\text{--}9$ Vdc; P_{out} = between 0.1 mW and 9 W; Load VSWR = 8:1, All Phase Angles at Frequency of Test) (1)	—	All Spurious Outputs More Than 60 dB Below Desired Signal		

(1) Adjust V_{cont} for Specified P_{out} .

MHW2707A1 CIRCUIT BLOCK DIAGRAM

Pin Designations:


- Pin 1 — RF Input Power (0 dBm)
- Pin 2 — V_{DD1} (7.5 Vdc)
- Pin 3 — V_{cont} (0 – 7 Vdc)
- Pin 4 — V_{DD2} (7.5 Vdc)
- Pin 5 — V_{DD3} (7.5 Vdc)
- Pin 6 — RF OUT (7 Watts nom.)

Element Values:

- $C1 = 0.018 \mu\text{F}$
- $C2 = 0.1 \mu\text{F}$
- $C3 = 3.3 \mu\text{F}$
- $L1 = 0.22 \mu\text{H CHOKE}$
- $Z1 = Z2 = 50 \Omega$ Microstrip Line

Figure 1. UHF Power Module Test Circuit Schematic and Device Block Diagram

PACKAGE DIMENSIONS

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION F TO CENTER OF LEADS.
4. REF INDICATES NON-CONTROLLED DIMENSION FOR REFERENCE USE ONLY.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	1.760	1.780	44.70	45.21
B	1.370	1.390	34.80	35.31
C	0.245	0.265	6.22	6.73
D	0.017	0.023	0.43	0.58
E	0.080	0.100	2.03	2.54
F	0.132	BSC	3.35	BSC
G	1.650	BSC	41.91	BSC
H	1.290	BSC	32.77	BSC
J	0.266	0.280	6.76	7.11
K	0.230	0.300	5.84	7.62
L	1.090	BSC	27.69	BSC
N	1.190	BSC	30.25	BSC
P	0.010	REF	0.25	REF
Q	0.118	0.132	3.00	3.35
R	0.535	0.555	13.59	14.10
S	0.445	0.465	11.30	11.81
V	0.590	BSC	14.99	BSC
X	0.790	BSC	20.07	BSC
Z	0.390	BSC	9.91	BSC

STYLE 1:

1. RF INPUT
2. VDD1
3. VCONT
4. VDD2
5. VDD3
6. RF OUTPUT

CASE: GROUND

CASE 301AL-01
ISSUE O

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4-32-1,
Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. 81-3-5487-8488

Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602-244-6609

– US & Canada ONLY 1-800-774-1848

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

INTERNET: <http://motorola.com/sps>

MOTOROLA