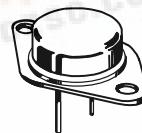


Complementary Silicon Power Transistors


The MJ15003 and MJ15004 are PowerBase power transistors designed for high power audio, disk head positioners and other linear applications.

- High Safe Operating Area (100% Tested) — 250 W @ 50 V
- For Low Distortion Complementary Designs
- High DC Current Gain — $hFE = 25$ (Min) @ $I_C = 5$ Adc

**NPN
MJ15003***
**PNP
MJ15004***

*Motorola Preferred Device

**20 AMPERE
POWER TRANSISTORS
COMPLEMENTARY
SILICON
140 VOLTS
250 WATTS**

**CASE 1-07
TO-204AA
(TO-3)**

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V_{CEO}	140	Vdc
Collector-Base Voltage	V_{CBO}	140	Vdc
Emitter-Base Voltage	V_{EBO}	5	Vdc
Collector Current — Continuous	I_C	20	Adc
Base Current — Continuous	I_B	5	Adc
Emitter Current — Continuous	I_E	25	Adc
Total Power Dissipation @ $T_C = 25^\circ\text{C}$ Derate above 25°C	P_D	250 1.43	Watts W/ $^\circ\text{C}$
Operating and Storage Junction Temperature Range	T_J, T_{stg}	-65 to +200	$^\circ\text{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.70	$^\circ\text{C/W}$
Maximum Lead Temperature for Soldering Purposes: 1/16" from Case for ≤ 10 seconds	T_L	265	$^\circ\text{C}$

MJ15003 MJ15004

*ELECTRICAL CHARACTERISTICS ($T_C = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector Emitter Sustaining Voltage (1) ($I_C = 200 \text{ mA}$, $I_B = 0$)	$V_{CEO(\text{sus})}$	140	—	Vdc
Collector Cutoff Current ($V_{CE} = 140 \text{ Vdc}$, $V_{BE(\text{off})} = 1.5 \text{ Vdc}$) ($V_{CE} = 140 \text{ Vdc}$, $V_{BE(\text{off})} = 1.5 \text{ Vdc}$, $T_C = 150^\circ\text{C}$)	I_{CEX}	—	100 2	μA mA
Collector Cutoff Current ($V_{CE} = 140 \text{ Vdc}$, $I_B = 0$)	I_{CEO}	—	250	μA
Emitter Cutoff Current ($V_{EB} = 5 \text{ Vdc}$, $I_C = 0$)	I_{EBO}	—	100	μA
SECOND BREAKDOWN				
Second Breakdown Collector Current with Base Forward Baised ($V_{CE} = 50 \text{ Vdc}$, $t = 1 \text{ s}$ (non repetitive)) ($V_{CE} = 100 \text{ Vdc}$, $t = 1 \text{ s}$ (non repetitive))	$I_{S/b}$	5 1	—	Adc
ON CHARACTERISTICS				
DC Current Gain ($I_C = 5 \text{ Adc}$, $V_{CE} = 2 \text{ Vdc}$)	h_{FE}	25	150	
Collector Emitter Saturation Voltage ($I_C = 5 \text{ Adc}$, $I_B = 0.5 \text{ Adc}$)	$V_{CE(\text{sat})}$	—	1	Vdc
Base Emitter On Voltage ($I_C = 5 \text{ Adc}$, $V_{CE} = 2 \text{ Vdc}$)	$V_{BE(\text{on})}$	—	2	Vdc
DYNAMIC CHARACTERISTICS				
Current Gain — Bandwidth Product ($I_C = 0.5 \text{ Adc}$, $V_{CE} = 10 \text{ Vdc}$, $f_{\text{test}} = 0.5 \text{ MHz}$)	f_T	2	—	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f_{\text{test}} = 1 \text{ MHz}$)	C_{ob}	—	1000	pF

(1) Pulse Test: Pulse Width = 300 μs , Duty Cycle $\leq 2\%$.

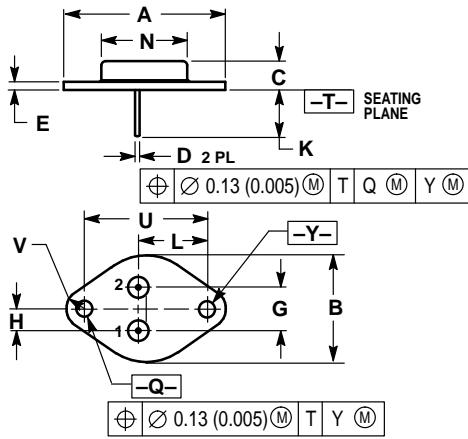



Figure 1. Active-Region Safe Operating Area

There are two limitations on the powerhandling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 1 is based on $T_J(\text{pk}) = 200^\circ\text{C}$; T_C is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

PACKAGE DIMENSIONS

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	1.550	REF	39.37	REF
B	—	1.050	—	26.67
C	0.250	0.335	6.35	8.51
D	0.038	0.043	0.97	1.09
E	0.055	0.070	1.40	1.77
G	0.430	BSC	10.92	BSC
H	0.215	BSC	5.46	BSC
K	0.440	0.480	11.18	12.19
L	0.665	BSC	16.89	BSC
N	—	0.830	—	21.08
Q	0.151	0.165	3.84	4.19
U	1.187	BSC	30.15	BSC
V	0.131	0.188	3.33	4.77

STYLE 1:
PIN 1. BASE
2. Emitter
CASE: COLLECTOR

CASE 1-07
TO-204AA (TO-3)
ISSUE Z

MJ15003 MJ15004

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447

MFAX: RMFAX0@email.sps.mot.com – **TOUCHTONE** (602) 244-6609
INTERNET: <http://Design-NET.com>

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki,
6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298