

T-33-15

MOTOROLA SEMICONDUCTOR

TECHNICAL DATA

Designers Data Sheet

SWITCHMODE SERIES NPN SILICON POWER TRANSISTORS

The MJ8504 and MJ8505 transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line operated switch-mode applications such as:

- Switching Regulators
- Inverters
- Solenoid and Relay Drivers
- Motor Controls
- Deflection Circuits

Fast Turn-Off Times

- 75 ns Inductive Fall Time -25°C (typ)
- 150 ns Inductive Crossover Time -25°C (typ)
- 1.25 μs Inductive Storage Time -25°C (typ)

Operating Temperature Range -65 to $+200^{\circ}\text{C}$

100°C Performance Specified for:

- Reverse-Biased SOA with Inductive Loads
- Switching Times with Inductive Loads
- Saturation Voltages
- Leakage Currents

MAXIMUM RATINGS

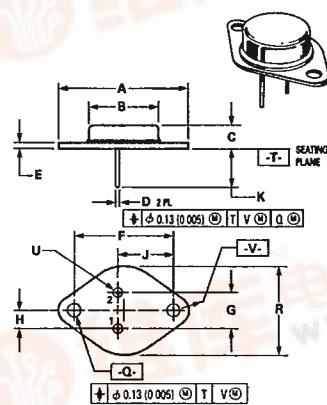
Rating	Symbol	MJ8504	MJ8505	Unit
Collector-Emitter Voltage	V_{CEO}	700	800	Vdc
Collector-Emitter Voltage	V_{CEV}	1200	1400	Vdc
Emitter Base Voltage	V_{EB}	8.0	8.0	Vdc
Collector Current - Continuous Peak (1)	I_C	10	10	Adc
Base Current - Continuous Peak (1)	I_B	8	8	Adc
Total Power Dissipation @ $T_C = 25^{\circ}\text{C}$ @ $T_C = 100^{\circ}\text{C}$	P_D	175 100 1.0	175 100 1.0	Watts $^{\circ}\text{C}$
Operating and Storage Junction Temperature Range	T_J, T_{stg}	-65 to $+200$		$^{\circ}\text{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	1.0	$^{\circ}\text{C/W}$
Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	T_L	275	$^{\circ}\text{C}$

(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle $\leq 10\%$.

MJ8504 MJ8505


10 AMPERE

NPN SILICON POWER TRANSISTORS

700 and 800 VOLTS
175 WATTS

Designer's Data for "Worst Case" Conditions

The Designers Data Sheet permits the design of most circuits entirely from the information presented. Limit data — representing device characteristics boundaries — are given to facilitate "worst case" design.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO 204AA OUTLINE SHALL APPLY.

DIM	MILLIMETERS		INCHES	
	MM	MAX	MM	MAX
A	—	39.37	—	1.550
B	—	21.08	—	0.830
C	6.35	8.25	0.250	0.032
D	0.97	1.09	0.038	0.043
E	1.40	1.77	0.055	0.070
F	30.15 BSC		1.187 BSC	
G	10.92 BSC		0.430 BSC	
H	5.46 BSC		0.215 BSC	
J	15.89 BSC		0.665 BSC	
K	11.18	12.19	0.440	0.480
O	3.84	4.19	0.151	0.165
R	—	26.67	—	1.050
U	4.83	5.33	0.190	0.210
V	3.84	4.19	0.151	0.165

STYLE 1:
PIN 1. BASE
2. Emitter
CASE COLLECTOR

CASE 1-06
TO-204AA
(TO-3)

T-33-15

ELECTRICAL CHARACTERISTICS ($T_C = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (Table 1) ($I_C = 100 \text{ mA}$, $I_B = 0$)	$V_{CEO(\text{sus})}$ MJ8504 MJ8505	700 800	—	—	Vdc
Collector Cutoff Current (V_{CEV} = Rated Value, $V_{BE(\text{off})} = 1.5 \text{ Vdc}$) (V_{CEV} = Rated Value, $V_{BE(\text{off})} = 1.5 \text{ Vdc}$, $T_C = 150^\circ\text{C}$)	I_{CEV}	— —	— —	0.25 5.0	mAdc
Collector Cutoff Current ($V_{CE} = \text{Rated } V_{CEV}$, $R_{BE} = 50 \Omega$, $T_C = 100^\circ\text{C}$)	I_{CER}	—	—	5.0	mAdc
Emitter Cutoff Current ($V_{EB} = 7.0 \text{ Vdc}$, $I_C = 0$)	I_{EBO}	—	—	1.0	mAdc
SECOND BREAKDOWN					
Second Breakdown Collector Current with base forward biased	$I_{S/b}$	See Figure 12			
Clamped Inductive SOA with Base Reverse Biased	RBSOA	See Figure 13			
ON CHARACTERISTICS (1)					
DC Current Gain ($I_C = 1.5 \text{ Adc}$, $V_{CE} = 5.0 \text{ Vdc}$)	h_{FE}	7.5	—	—	—
Collector-Emitter Saturation Voltage ($I_C = 5.0 \text{ Adc}$, $I_B = 2.0 \text{ Adc}$) ($I_C = 10 \text{ Adc}$, $I_B = 4.0 \text{ Adc}$) ($I_C = 5.0 \text{ Adc}$, $I_B = 2.0 \text{ Adc}$, $T_C = 100^\circ\text{C}$)	$V_{CE(\text{sat})}$	— — —	— — —	2.0 5.0 3.0	Vdc
Base-Emitter Saturation Voltage ($I_C = 5.0 \text{ Adc}$, $I_B = 2.0 \text{ Adc}$) ($I_C = 5.0 \text{ Adc}$, $I_B = 2.0 \text{ Adc}$, $T_C = 100^\circ\text{C}$)	$V_{BE(\text{sat})}$	— —	— —	1.5 1.5	Vdc
DYNAMIC CHARACTERISTICS					
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f_{\text{test}} = 1.0 \text{ kHz}$)	C_{ob}	90	—	450	pF
SWITCHING CHARACTERISTICS					
Resistive Load (Table 1)					
Delay Time	$(V_{CC} = 500 \text{ Vdc}$, $I_C = 5.0 \text{ A}$, $I_B1 = 2.0 \text{ A}$, $V_{BE(\text{off})} = 5.0 \text{ Vdc}$, $t_p = 50 \mu\text{s}$, Duty Cycle < 2.0%)	t_d	—	0.050	μs
Rise Time		t_r	—	0.175	μs
Storage Time		t_s	—	1.25	μs
Fall Time		t_f	—	0.60	μs
Inductive Load, Clamped (Table 1)					
Storage Time	$(I_C = 5.0 \text{ A(pk)}$, $V_{clamp} = 500 \text{ Vdc}$, $I_{B1} = 2.0 \text{ A}$, $V_{BE(\text{off})} = 5 \text{ Vdc}$, $T_C = 100^\circ\text{C}$)	t_{sv}	—	1.75	μs
Crossover Time		t_c	—	0.400	μs
Storage Time		t_{sv}	—	1.25	μs
Crossover Time		t_c	—	0.150	μs
Fall Time		t_{fi}	—	0.075	μs

(1) Pulse Test: PW = 300 μs , Duty Cycle < 2%.

3

T-33-15

FIGURE 1 - DC CURRENT GAIN

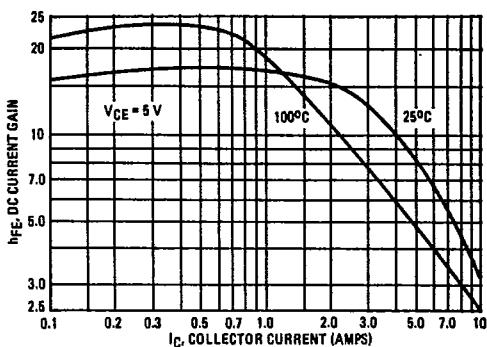


FIGURE 2 - COLLECTOR SATURATION REGION

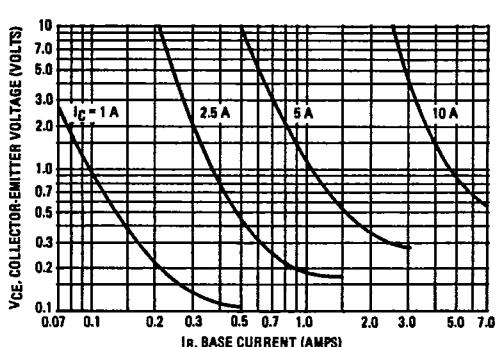


FIGURE 3 - COLLECTOR-EMITTER SATURATION REGION

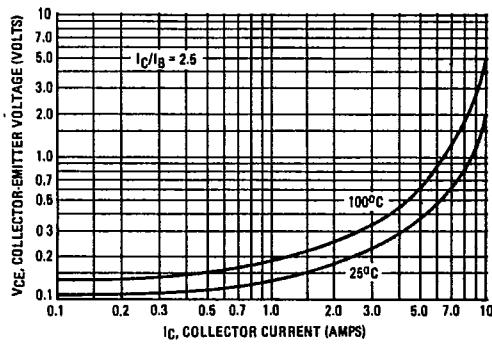


FIGURE 4 - BASE Emitter VOLTAGE

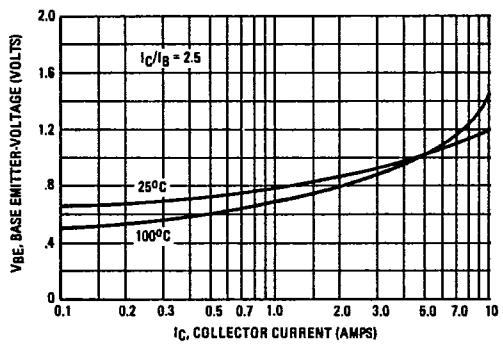


FIGURE 5 - COLLECTOR CUTOFF REGION

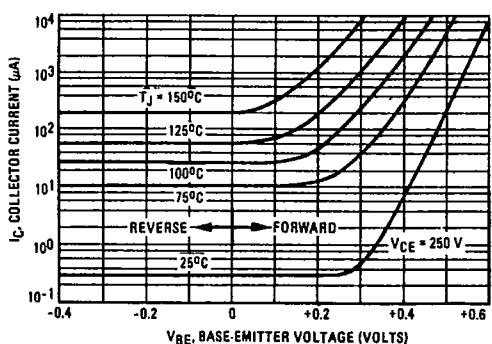
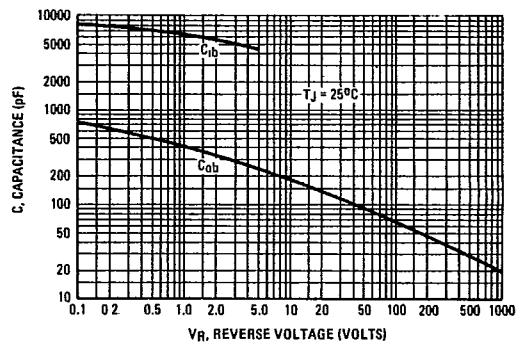



FIGURE 6 - CAPACITANCE

SWITCHING TIMES NOTE

FIGURE 7 – INDUCTIVE SWITCHING MEASUREMENTS

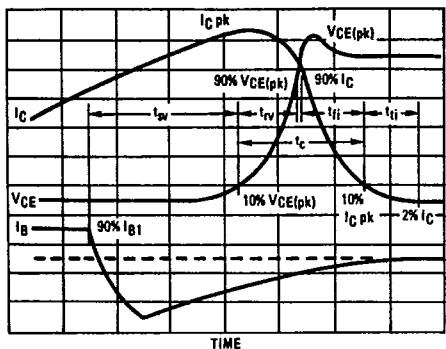
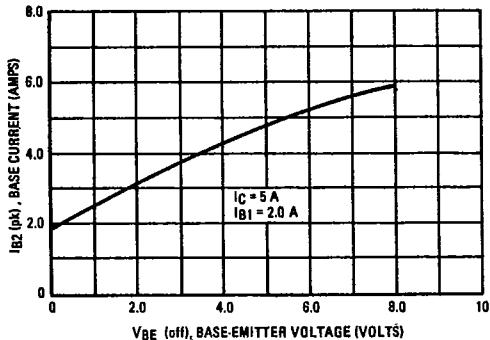



FIGURE 8 – PEAK REVERSE BASE CURRENT

In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined.

t_{sv} = Voltage Storage Time, 90% I_{B1} to 10% $V_{CE}(pk)$

t_{rv} = Voltage Rise Time, 10–90% $V_{CE}(pk)$

t_{fi} = Current Fall Time, 90–10% I_C

t_{ti} = Current Tail, 10–2% I_C

t_c = Crossover Time, 10% $V_{CE}(pk)$ to 10% I_C

An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these terms.

For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222A:

$$PSWT = 1/2 V_{CC} I_C t_c f$$

In general, $t_{rv} + t_{fi} \approx t_c$. However, at lower test currents this relationship may not be valid.

As is common with most switching transistors, resistive switching is specified at 25°C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (t_c and t_{sv}) which are guaranteed at 100°C.

3

RESISTIVE SWITCHING PERFORMANCE

FIGURE 9 – TURN-ON SWITCHING TIMES

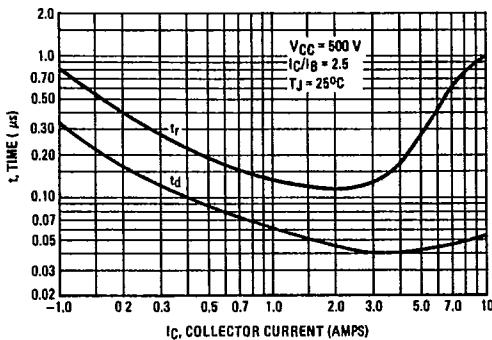
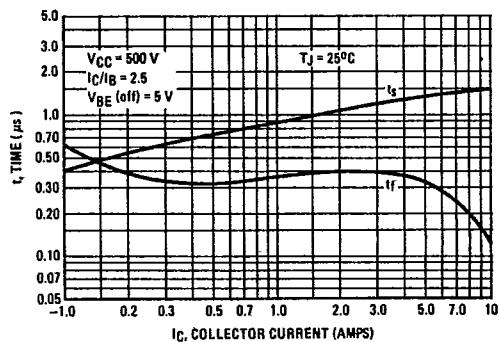
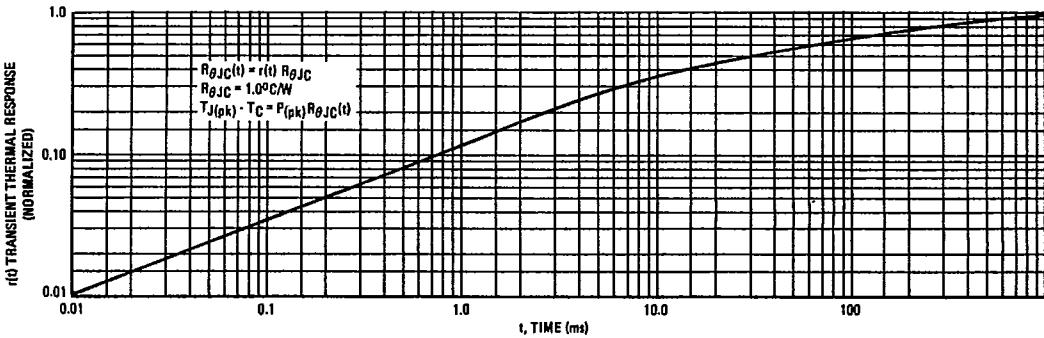



FIGURE 10 – TURN-OFF SWITCHING TIMES



T-33-15

T-91-01

TABLE 1 – TEST CONDITIONS FOR DYNAMIC PERFORMANCE

FIGURE 11 – THERMAL RESPONSE

T-33-75

T-91-01

SAFE OPERATING AREA INFORMATION

FIGURE 12 - FORWARD BIAS SAFE OPERATING AREA

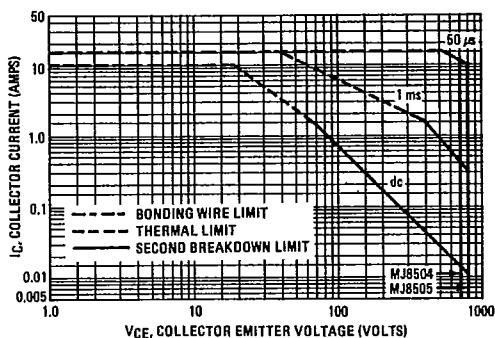
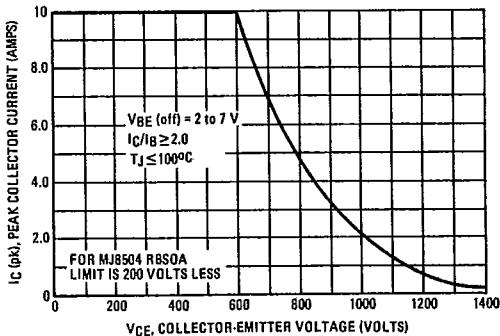
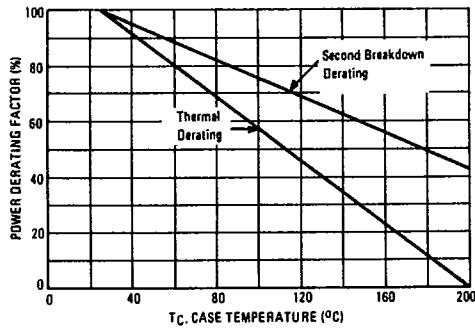



FIGURE 13 - RBSOA, REVERSE BIAS SWITCHING
SAFE OPERATING AREA

FIGURE 14 - POWER DERATING

3