

MK712 Touch Screen Controller

Description

The MK712 Touch Screen Controller IC provides all the screen drive, A to D converter and control circuits to easily interface to 4-wire analog resistive touch screens.

The IC continually monitors the screen waiting for a touch. In this mode, the supply current is typically 0.5μ A. When the screen is touched, the IC performs analog to digital conversions to determine the location of the touch, stores the X and Y locations in the registers, and issues an interrupt. This process is repeated up to 197 times per second until no further screen touches are detected, at which time the low current mode is resumed.

REGISTERS

STATUS LOW

0

Block Diagram

D0-D7

Features

- Fully integrated, lowest power solution
- Low standby current of 0.5µA (typical) at 5.0V
- Active current while converting less than 10 mA
- Resolves 350 dots/inch on 10.5" display
- Maximum speed of 197 points/second
- Ratiometric conversion may eliminate screen calibration
- Automatically wakes up and goes back to standby
- 3.3V or 5V supply
- 12 bit A/D converter
- Simplifies the writing of software for touch screens
- Extended temperature range available
- Capacitors are the only external components required
- Touch screen is directly driven no external transistors are required
- Programmable conversion rate
- A to D Converter is monotonic
- Parallel interface
- See the MK715 for a serial interface

df.dzIntegrated Circuit Systems, Inc.•525 Race St.•San Jose•CA•95126•(408)295-9800tel•www.icst.com

Pin Descriptions

Number	Name	Туре	Description
1	NC	-	No Connect
2	INT	0	Interrupt. Goes high to signal an interrupt. Cleared on next read.
3	TOUCH	0	Touch signal. Goes low when screen is touched. Goes high when not touched.
4	VDD	Р	Connect to +5V or +3.3V.*
5	VDD	Р	Connect to +5V or +3.3V.*
6	XH	TS	Connect to X-high on touch screen. (Right side)
7	XL	TS	Connect to X-low on touch screen. (Left side)
8	YH	TS	Connect to Y-high on touch screen. (Top)
9	YL	TS	Connect to Y-low on touch screen. (Bottom)
10	GND	Р	Connect to ground.
11	GND	Р	Connect to ground.
12	WR	Ι	Write enable. Active low.
13	RD	Ι	Read enable. Active low.
14	CS	I	Chip select. Active low.
15	A2	I	Register address 2.
16	A1	Ι	Register address 1.
17	A0	I	Register address 0.
18	CLKIN	I	Clock input. Typically 14.3 MHz. Best if driven by a MicroClock clock synthesizer.
19	D7	I/O	Data bit 7.
20	D6	I/O	Data bit 6.
21	GND	Р	Connect to ground.
22	VDD	Р	Connect to +5V or +3.3V.*
23	D5	I/O	Data bit 5.
24	D4	I/O	Data bit 4.
25	D3	I/O	Data bit 3.
26	D2	I/O	Data bit 2.
27	D1	I/O	Data bit 1.
28	D0	I/O	Data bit 0.

Key: I = Input, O = Output, I/O = Input and Output, P = Power, TS = Touch Screen pin..

*Note: All VDD's must be connected to the same voltage.

Interrupts

Interrupts are controlled by register 6 (see Register Description). The INT pin (pin 2) goes high to signal an interrupt. Interrupts are then cleared by reading any register. However, if the MK712 is in the process of generating an interrupt during a read cycle, then the interrupt is not cleared and INT will stay high. This internal process may take 100ns, and so to guarantee that the interrupt is cleared, two successive read cycles may be necessary.

MDS 712 I 2 Revision 100899 Printed 11/16/00 Integrated Circuit Systems, Inc.•525 Race St.•San Jose•CA•95126•(408)295-9800tel•www.icst.com

MK712 Touch Screen Controller

MDS 712 I

3

Revision 100899 Printed 11/16/00

Integrated Circuit Systems, Inc.•525 Race St.•San Jose•CA•95126•(408)295-9800tel•www.icst.com

Register Description

The MK712 register set is designed to be compatible with the Gazelle pen digitizer registers allowing a software driver for the Gazelle digitizer to be used with the MicroClock MK712. The eight 8-bit registers are defined below:

Rate Register (Register 7) Programming

Count	P.P.S.	Count	P.P.S.	Count	P.P.S.
0 to 8	Not Permitted	28	95	100	32
9	197	29	93	105	31
10	187	30	90	110	29
11	177	31	88	115	28
12	169	32	86	120	27
13	161	33	84	125	26
14	154	34	82	130	25
15	147	35	80	135	24
16	141	40	72	140	24
17	136	45	65	145	23
18	131	50	60	150	22
19	126	55	55	155	21
20	122	60	51	165	20
21	118	65	47	175	19
22	114	70	44	185	18
23	110	75	42	195	17
24	107	80	39	205	16
25	104	85	37	225	15
26	101	90	35	235	14
27	98	95	34	255	13

P.P.S. = Points Per Second. With a 14.318 MHz clock.

Calculating Points Per Second

The formula for determining P.P.S. is:

P.P.S. =
$$\frac{\text{fin}}{35716 + (4096 \text{ x COUNT})}$$

Where fin is the frequency of the CLKIN input.

Power-On Reset

On application of power, an internal reset is generated that clears all bits in registers 0, 1, and 6. Register 7 is set to 32 giving a rate of 86 PPS. Note that clearing register 6 puts the IC into the power down condition.

Initializing the MK712

The interrupt on the MK712 can only be cleared by reading a register or by writing register 6 to the power down condition. After a fault condition, initialize the MK712 by writing register 6 to zero and then writing register 6 to the desired value. This will always clear pending interrupts.

MDS 712 I 5 Revision 100899 Printed 11/16/00 Integrated Circuit Systems, Inc.•525 Race St.•San Jose•CA•95126•(408)295-9800tel•www.icst.com

Recommended Circuit

Pen Bounce

When the screen is untouched, the Y plate is driven high and the X plate is driven low. When the screen is touched, the X plate is pulled high, which is detected by the MK712. This initiates a conversion (as long as periodic conversions are enabled). Some de-bounce is provided by the time constant of the screen decoupling capacitors combined with the screen resistance. However, once conversions have started, pen bounce will not be detected until after both the X and Y points have been taken.

If the pen is lifted during a conversion, this will also not be detected until the conversion is complete. This is typically indicated by a point with the correct Y coordinates, but minimum (for that screen) X coordinates.

Screen Decoupling

The component values suggested should give excellent results. However, for screens with a high resistance operating at a high conversion rate, extra interrupts may be issued. This is because the time constant of the screen decoupling capacitors and screen resistance is high, resulting in the screen appearing to be untouched and then touched between conversions. These extra interrupts can be eliminated by reducing the size of the screen decoupling capacitors on pins XH, XL, YH, and YL. This will, however, slightly reduce the noise rejection, which could decrease the accuracy of the conversion.

Optimizing Performance when Reading and Writing Registers

Reading and writing the MK712 generates digital noise that may reduce the accuracy of the A to D converter. This noise has several causes, including board layout, data bus loading, and power supply voltage. By appropriately timing the register operations, the effects of this noise can be minimized.

After an interrupt is issued, the MK712 allows a minimum of 1 millisecond to elapse before initiating the conversion cycle. This allows the screen drivers to settle. For best performance, complete all register operations within this 1ms window after an interrupt.

Power Down/Stopping the Clock

If the screen is untouched, the supply current is under 3μ A. If the input clock is stopped, the supply current is also less than 3µA. When the screen is touched with no clock, TOUCH goes low and INT goes high, but no further operations occur until the clock starts. A to D conversions are invalid until after the clock has stabilized at the correct frequency and one full conversion cycle has been completed.

Input Clock

The MK712 is highly tolerant of different clock frequencies (from 12 to 20 MHz), rise times, and duty cycles. However, any input clock undershoot or overshoot will cause the MK712 to draw extra current. This can be eliminated by using a MicroClock clock synthesizer and properly terminating the clock driver. MicroClock makes low power clock synthesizers with 14.3 MHz power down.

Resistive Touch Screen (4 Wire)

Resistive touch screens consist of 2 resistive plates that are separated by a small gap. Each plate has an electrode at each end and when the screen is touched, the two plates are shorted together at that point.

If a voltage is applied, for example, between XL and XH, then a voltage divider is formed on the X PLATE. When the Y PLATE is touched to the X PLATE, a voltage will be developed on the Y PLATE that is proportional to distance of the touch from XL and XH. By accurately measuring this voltage, the position of the touch can be determined.

MDS 712 I

Recommended Method for Reading Points

If the user is pressing lightly on the touch screen, it is likely that the screen contact will be intermittent. The screen will bounce, causing false points. This effect can be reduced by insuring that the screen is touched both before and after a conversion. By doing this, the first and last point in a series of points are discarded. The following algorithm checks that a point has valid touches both before and after a conversion, and it distinguishes between change-in-touch interrupts and conversion complete interrupts. Register 6 bits 0, 1, and 2 must all be true (logical 1) in order to use this method.

Warning - When Using a Switching Regulator Power Supply

When using the MK712 in a system where the power is supplied by a switching regulator, do not perform screen conversions when the regulator is operating in the power saving mode. Some switching regulators feature a low power mode (for example, Linear Technology's "Burst Mode") where the output is turned on and off in order to save power. The extra power supply noise generated when using this mode causes spurious data points to be returned from the MK712, so it should be disabled when the MK712 is doing screen conversions.

Analog to Digital Converter Operation

The 12-bit ADC converts X and Y co-ordinates at a rate determined by registers 6 and 7. The converter uses a ratiometric technique to give absolute co-ordinates on the screen, largely independent of variations in screen resistance, temperature or power supply voltage. The total voltage applied across the screen is defined as full-scale for the converter (i.e. 4095) and any point touched on the screen is proportional to this. For example, if the screen is touched exactly in the center, the converter will read 2047. This feature may allow for the elimination of calibration upon startup.

However, the full scale voltage is defined at the IC pins and so any parasitic interconnect resistance will be included in full scale. In addition, the interconnect resistances on the screen also account for about 20% of the total resistance. This means that approximately the bottom 10% and top 10% of full scale are inaccessible.

The converter is guaranteed to be monotonic, with no missing codes.

Electrical Specifications

Parameter	Conditions	Minimum	Typical	Maximum	Units	
ABSOLUTE MAXIMUM RATINGS (note 1)						
Supply voltage, VDD	Referenced to GND			7	V	
Inputs and Clock Outputs	Referenced to GND	-0.5		VDD+0.5	V	
Ambient Operating Temperature		0		70	°C	
Soldering Temperature	Max of 20 seconds			260	°C	
Storage temperature		-65		150	°C	
DC CHARACTERISTICS						
Operating Voltage, VDD		3.0		5.5	V	
Input High Voltage, VIH	VDD=5V	2.0			V	
Input Low Voltage, VIL	VDD=5V			0.8	V	
Output High Voltage, VOH	IOH=-2mA	VDD-0.4			V	
Output High Voltage, VOH	VDD=5V, IOH=-12mA	2.4			V	
Output Low Voltage, VOL	VDD=5V, IOL=12mA			0.4	V	
Input High Voltage, VIH	VDD=3.3V	1.9			V	
Input Low Voltage, VIL	VDD=3.3V			0.4	V	
Output High Voltage, VOH	VDD=3.3V, IOH=-6mA	2.4			V	
Output Low Voltage, VOL	VDD=3.3V, IOL=6mA			0.4	V	
Operating Supply Current, IDD, at VDD=5V	300 screen, 100 PPS		5		mA	
Operating Supply Current, IDD, at VDD=3.3V	note 4		3		mA	
Operating Supply Current, IDD standby, clock	note 5		0.5	3	μΑ	
Operating Supply Current, IDD standby	note 6		0.5	3	μA	
Operating Supply Current, IDD power down	PD=0 or PD=1, no clock		0.2	3	μA	
Short Circuit Current	Each output		±50		mA	
Input Capacitance			7		pF	
AC CHARACTERISTICS						
Input Clock Frequency, pin 18	Note 2	12	14.32	20	MHz	
Input Clock Duty Cycle, pin 18	at 1.5V	25		75	%	
Output Rise Time	0.8 to 2.0V, VDD=5V			3	ns	
Output Fall Time	2.0 to 0.8V, VDD=5V			3	ns	
Resolution				12	bits	
Non-linearity	Monotonic, note 3			±2	LSB	
Touch Screen Resistance		100		2000		

Notes: 1. Stresses beyond those listed under Absolute Maximum Ratings could cause permanent damage to the device. Prolonged exposure to levels above the operating limits but below the Absolute Maximums may affect device reliability.

2. Consult MicroClock about the best device to use to generate the input clock.

3. With no missing codes.

4. Assumes no 14.3MHz input clock overshoot, 300 screen, 100 PPS

5. Assumes no 14.3MHz input clock overshoot, no touch

6. With no touch, no clock

MDS 712 I

10

Register Interface Timing

#	Symbol	Description	Min	Max	Unit	Note	
REA	READ AND WRITE CYCLES						
1	TRASC	Address Setup to \overline{CS} Low	5		ns		
2	TRAHC	Address Hold from CS High	0		ns		
3	TRCCY	$\overline{\text{CS}}$ High to $\overline{\text{CS}}$ Low	40		ns		
REA	D CYCLE O	NLY	.				
4	TRSCR	CS Low to RD Low	10		ns		
5	TRRD	RD Pulse Width	40		ns		
6	TRCHR1	RD High to CS High	0		ns		
7	TRCHR2	RD High to CS Low	40		ns		
8	TRDC	CS Low to Data		35	ns		
9	TRDR	RD Low to Data		35	ns		
10	TRDHC	CS High to Data Release	2	20	ns	1	
11	TRDHR	RD High to Data Release	2	20	ns	1	
WRI	TE CYCLE	ONLY					
12	TRCSW	$\overline{\text{CS}}$ Low to $\overline{\text{WR}}$ Low	10		ns		
13	TRWR	WR Pulse Width	40		ns		
14	TRCHW	WR High to CS High	0		ns	2	
15	TRWH	$\overline{\mathrm{WR}}$ High to $\overline{\mathrm{CS}}$ Low	40		ns		
16	TRWCY	$\overline{\mathrm{WR}}$ High to $\overline{\mathrm{WR}}$ Low	40		ns		
17	TRDW	Data Setup to WR High	15		ns	3	
18	TRDHW	Data Hold from WR High	15		ns	4	
19	TRDWC	Data Setup to CS High	15		ns	3	
20	TRDHWC	Data Hold from CS High	15		ns	4	

Notes:

<u>RD</u> edges may precede or follow <u>CS</u> edges.
<u>WR</u> edges may precede or follow <u>CS</u> edges.
Either TRDW or TRDWC specification must be met.
Either TRDHW or TRDHWC specification must be met.
It is not permitted to have both <u>RD</u> and <u>WR</u> low at the same time.

MDS 712 I

Register Read

Register Write

Suggested Layout

(G) = connection to ground plane (V) = connection to VDD plane

Notes:

1. The 14.318 MHz input clock on pin 18 should have a 33 series termination resistor at its source. Consult MicroClock for the best way to generate this clock.

2. All digital signals should be kept well away from pins 4, 5, 6, 7, 8, 9, 10, and 11, and any traces connected to those pins.

MDS 712 I

Revision 100899 Printed 11/16/00 Integrated Circuit Systems, Inc.•525 Race St.•San Jose•CA•95126•(408)295-9800tel•www.icst.com

MK712 Touch Screen Controller

Package Outline and Package Dimensions

28 pin SOIC wide

	Inches		Millimeters	
Symbol	Min	Max	Min	Max
Α	0.092	0.104	2.3368	2.6416
b	0.014	0.019	0.356	0.483
С	0.009	0.012	0.229	0.305
D	0.696	0.712	17.678	18.085
Е	0.290	0.300	7.366	7.620
Н	0.394	0.419	10.008	10.643
е	.050 BSC		1.27 BSC	
h		0.016		0.406
Q	0.003	0.011	0.076	0.279

28 pin SSOP (QSOP)

	Millimeters				
Symbol	Min	Max			
A	1.55	1.73			
b	0.203	0.305			
с	0.190	0.254			
D	9.780	10.160			
Е	3.810	4.064			
Н	5.840	6.223			
е	0.635 l	BSC			
h		0.410			
Q	0.127	0.254			

Ordering Information

Part/Order Number	Marking	Package	Temperature
MK712S	MK712S	28 pin SOIC	0 to +70°C
MK712STR	MK712S	Add tape and reel	0 to +70°C
MK712SI	MK712SI	28 pin SOIC	-30 to +70°C
MK712SITR	MK712SI	Add tape and reel	-30 to +70°C
MK712R	MK712R	28 pin SSOP	0 to +70°C
MK712RTR	MK712R	Add tape and reel	0 to +70°C
MK712RI	MK712RI	28 pin SSOP	-30 to +70°C
MK712RITR	MK712RI	Add tape and reel	-30 to +70°C

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring special processing, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.

©1995 ICS/MicroClock

16 MDS 712 I Revision 100899 Printed 11/16/00 Integrated Circuit Systems, Inc.•525 Race St.•San Jose•CA•95126•(408)295-9800tel•www.icst.com