ML6426 # High Bandwidth Triple Video Filters with Buffered Outputs for RGB or YUV #### GENERAL DESCRIPTION The ML6426 are a family of triple video filters with buffered outputs. There are several versions of the ML6426, each with different passband cut-off frequencies of 6.7MHz, 12MHz, 24MHz, 30MHz, 36MHz, and 48MHz. Each channel contains a 4th-order Butterworth lowpass reconstruction video filter. The filter is optimized for minimum overshoot and flat group delay and guaranteed differential gain and phase at the outputs of the integrated cable drivers. All input signals from DACs are AC coupled into the ML6426. All channels have DC restore circuitry to clamp the DC input levels during video H-sync, using an output feedback clamp. An external H-sync signal is required for this purpose. All outputs must be AC coupled into their loads. Each output can drive $2V_{P-P}$ into a 150Ω load. All channels have a gain of 2 (6dB) at $1V_{P-P}$ input levels. #### **FEATURES** - 5V ±10% operation - RGB/YUV filters for ATSC Digital Television VESA Standard - 2:1 Mux Inputs for multiple RGB/YUV inputs - Triple Reconstruction Filter options for 6.7, 12, 24, 30, 36, and 48MHz to handle various line rates - Multiple ML6426 outputs can be paralleled to drive RGB/YUV outputs at different frequencies for various line rates by means of Disable/Enable pin. - 6dB drivers and sync tip clamps for DC restore - DC restore with minimal tilt - 0.4% differential gain on all channels 0.4° differential phase on all channels 0.8% total harmonic distortion on all channels - 2kV ESD protection #### **BLOCK DIAGRAM** ## PIN CONFIGURATION ML6426 16-Pin Narrow SOIC (S16N) #### PIN DESCRIPTION | PIN | NAME | FUNCTION | PIN | NAME | FUNCTION | |-----|-------------------------------------|---|-----|-------------------------------------|--| | 1 | A/B MUX | Logic input pin to select between Bank <a> and Bank video inputs. This pin is internally pulled high. | 8 | B _{IN} A/V _{IN} A | Unfiltered analog B- or V-channel input for Bank <a>. Sync must be provided at SYNC IN pin. | | 2 | R _{IN} A/Y _{IN} A | Unfiltered analog R- or Y-channel input for Bank <a>. Sync must be provided at SYNC IN pin. | 9 | B _{IN} B/V _{IN} B | Unfiltered analog B- or V-channel input for Bank . Sync must be provided at SYNC IN pin. | | 3 | GND | Analog ground | 10 | B_{OUT} | Analog B or V-channel output | | 4 | V_{CC} | Analog 5V supply | 11 | G_{OUT} | Analog G or U-channel output | | 5 | $R_{IN}B/Y_{IN}B$ | Unfiltered analog R- or Y-channel | 12 | V_{CCO} | 5V power supply for output buffers | | | | input for Bank . Sync must be provided at SYNC IN pin. | 13 | R_{OUT} | Analog R or Y-channel output | | 6 | G _{IN} A/U _{IN} A | Unfiltered analog G- or U-channel | 14 | GNDO | Analog ground | | | | input for Bank <a>. Sync must be provided at SYNC IN pin. | 15 | DISABLE | Disable/Enable pin. Turns the chip off | | 7 | G _{IN} B/U _{IN} B | Unfiltered analog G- or U-channel input for Bank . Sync must be provided at SYNC IN pin. | 16 | SYNC IN | when logic high. Internally pulled low. Input for an external H-sync logic signal for filter channels. CMOS level input. Active High. | #### **ABSOLUTE MAXIMUM RATINGS** Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied. | V _{CC} | 0.3V to 7V | |------------------------|------------| | Junction Temperature | | | ESD | | | Analog and Digital I/O | | | Storage Temperature Range | 65°C to 150°C | |---------------------------------------|---------------| | Lead Temperature (Soldering, 10 sec). | | | Thermal Resistance (θ_{JA}) | 100°C/W | #### **OPERATING CONDITIONS** | Temperature Range | 0°C to | 70°C | |-----------------------|--------|------| | V _{CC} Range | | | #### **ELECTRICAL CHARACTERISTICS** Unless otherwise specified, $V_{CC} = 5V \pm 10\%$, $T_A = Operating Temperature Range (Note 1)$ | SYMBOL | PARAMETER CONDITIONS | | MIN | TYP | MAX | UNITS | |--------------------|---|---|------|-----|------|-------------------| | GENERAL | | | | 1 | 1 | - 1 | | I _{CC} | Supply Current | No Load (V _{CC} =5.5V) | | 52 | 80 | mA | | A _V | Low Frequency Gain (R, G, B) | V _{IN} = 100mV _{P-P} at 100KHz | 5.34 | 6.0 | 6.65 | dB | | V _{OUT} | Output Level during Sync (R, G, B,) | DURINGSYNC | 0.7 | 0.9 | 1.1 | V | | | Output Capability | RL = 150W, AC-coupled@1MHz | 2 | | | VP-P | | t _{CLAMP} | Clamp Response Time | Settled to Within 10mV, $C_{IN} = 0.1 \mu F$ | | 10 | | ms | | VI | Input Signal Dynamic Range (R, G, B,) | AC Coupled | | 1.4 | | V _{P-P} | | OS | Peak Overshoot (R, G, B,) | 2V _{P-P} Output Pulse | | 4.3 | | % | | C _L | Output Load Capacitance (R, G, B,) | All Outputs | | | 35 | pF | | | Output Load Drive Capability, per Pin
(YUV or RGB Outputs) | One Load is 150Ω | | 2 | | loads | | dG | Differential Gain (R, G, B,) | All Outputs at f _C /2 | | 0.4 | | % | | dφ | Differential Phase (R, G, B,) | All Outputs at f _C /2 | | 0.4 | | 0 | | T _{HD} | Output Distortion (R, G, B,) | $V_{OUT} = 2V_{P-P}$ at 1 MHz | | 0.8 | | % | | PSRR | PSRR (R, G, B,) | 0.5V _{P-P} (100kHz) at V _{CC} | | 35 | | dB | | I _{SC} | Output Short Circuit Current (R, G, B,) | Note 2 | | 120 | | mA | | V _{IH} | Input Voltage Logic High | DISABLE, SYNC IN | 2.5 | | | V | | V _{IL} | Input Voltage Logic Low | DISABLE, SYNC IN | | | 1.0 | V | | T _{MUX} | Input Mux
Data Valid
Time | A/B Mux
Pin Valid
High or Low | | 2 | | μs | | 6.7MHz FI | LTER: ML6426-1 | | | | | | | f _{1dB} | –1dB Bandwidth Flatness (R, G, B,) | 25°C | 4.0 | 4.8 | | MHz | | f_c | –3dB Bandwidth Flatness (R, G, B,) | 25°C | 6.0 | 6.7 | 7.3 | MHz | | f _{0.8fc} | 0.8 x f _C Attenuation | | | 1.5 | | dB | | f _{SB} | StopBand Rejection (All Channels $\geq 4 f_C$) | $f_{IN} \ge 4 f_{C}$, Note 3 | -38 | -42 | | dB | | NOISE | Output Noise (R, G, B,) | Fullband | | 1.0 | | mV _{RMS} | | X _{TALK} | Crosstalk | Input of 0.5V _{P-P} at 1 MHz
Between any two Channels | | -55 | | dB | | X _{TALK} | A/B MUX Crosstalk | Input of 0.5V _{P-P} at 3.58/4.43MHz | | -54 | | dB | | | | | | • | • | - | # **ML6426** ## **ELECTRICAL CHARACTERISTICS** (Continued) | SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS | |--------------------|--|---|------|-----|------|-------------------| | 6.7MHZ F | ILTER: ML6426-1 (continued) | 1 | 1 | | • | | | T _{PD} | Group Delay (R, G, B,) | 100kHz | | 70 | | ns | | ΔT_{PD} | Group Delay Deviation from Flatness | to 3.58MHz | | 4.0 | | ns | | | (R, G, B,) | to 4.43MHz | | 8.0 | | ns | | | | to 10MHz | | 9 | | ns | | 2MHz FILT | TER: ML6426-2 | | | | | | | f _{1dB} | –1dB Bandwidth Flatness (R, G, B,) | 25°C | 7.8 | 9.2 | | MHz | | f_c | –3dB Bandwidth Flatness (R, G, B,) | 25°C | 10.8 | 12 | 13.2 | MHz | | f _{0.8fc} | 0.8 x f _C Attenuation | | | 1.2 | | dB | | f_{SB} | StopBand Rejection (All Channels $\geq 4 f_C$) | $f_{IN} \ge 4 f_C$, Note 3 | | -40 | | dB | | NOISE | Output Noise (R, G, B,) | Fullband | | 1 | | mV _{RMS} | | X _{TALK} | Crosstalk | Input of 0.5V _{P-P} at 1 MHz
Between any two Channels | | -55 | | dB | | X _{TALK} | A/B MUX Crosstalk | Input of 0.5V _{P-P} at 3.58/4.43MHz | | -54 | | dB | | T _{PD} | Group Delay (R, G, B,) | 100kHz | | 40 | | ns | | ΔT_{PD} | Group Delay Deviation from Flatness | to 3.58MHz | | 1 | | ns | | | (R, G, B,) | to 4.43MHz | | 1 | | ns | | | | to 10MHz | | 7 | | ns | | 24MHz FII | LTER: ML6426-3 | | | | | | | f _{1dB} | –1dB Bandwidth Flatness (R, G, B,) | 25°C | 13.6 | 16 | | MHz | | f_c | –3dB Bandwidth Flatness (R, G, B,) | 25°C | 21.6 | 24 | 26.4 | MHz | | f _{0.8fc} | 0.8 x f _C Attenuation | | | 1.7 | | dB | | f_{SB} | StopBand Rejection (All Channels $\geq 4 f_{\text{C}}$) | $f_{IN} \ge 4 f_{C}$, Note 3 | | -40 | | dB | | NOISE | Output Noise (R, G, B,) | Fullband | | 1.0 | | mV_{RMS} | | X _{TALK} | Crosstalk | Input of 0.5V _{P-P} at 1 MHz
Between any two Channels | | -55 | | dB | | X_{TALK} | A/B MUX Crosstalk | Input of 0.5V _{P-P} at 3.58/4.43MHz | | -54 | | dB | | T_{PD} | Group Delay (R, G, B,) | 100kHz | | 22 | | ns | | ΔT_{PD} | Group Delay Deviation from Flatness | to 3.58MHz | | 1 | | ns | | | (R, G, B,) | to 4.43MHz | | 1 | | ns | | | | to 10MHz | | 2 | | ns | | 30MHz FII | LTER: ML6426-4 | • | | | | | | f_{1dB} | –1dB Bandwidth Flatness (R, G, B,) | 25°C | 15.3 | 18 | | MHz | | f _c | –3dB Bandwidth Flatness (R, G, B,) | 25°C | 27 | 30 | 33 | MHz | | f _{0.8fc} | 0.8 x f _C Attenuation | | | 1.7 | | dB | | f _{SB} | StopBand Rejection (All Channels $\geq 4 f_C$) | $f_{IN} \ge 4 f_C$, Note 3 | | -40 | | dB | | NOISE | Output Noise (R, G, B,) | Fullband | | 1.0 | | mV _{RMS} | ### **ELECTRICAL CHARACTERISTICS** (Continued) | SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS | |--------------------|---|---|------|-----|------|-------------------| | 30MHz FII | LTER: ML6426-4 (Continued) | • | 1 | | 1 | 1 | | X _{TALK} | Crosstalk | Input of 0.5V _{P-P} at 1 MHz
Between any two Channels | | -55 | | dB | | X _{TALK} | A/B MUX Crosstalk | Input of 0.5V _{P-P} at 3.58/4.43MHz | | -54 | | dB | | T _{PD} | Group Delay (R, G, B,) | 100kHz | | 18 | | ns | | ΔT_{PD} | Group Delay Deviation from Flatness | to 10MHz | | 0.5 | | ns | | | (R, G, B,) | to 27MHz | | 2 | | ns | | 36MHz FII | LTER: ML6426-5 | | | | • | · · | | f _{1dB} | –1dB Bandwidth Flatness (R, G, B,) | 25°C | 17 | 20 | | MHz | | f_{c} | –3dB Bandwidth Flatness (R, G, B,) | 25°C | 32.4 | 36 | 39.6 | MHz | | f _{0.8fc} | 0.8 x f _C Attenuation | | | 2 | | dB | | f _{SB} | StopBand Rejection (All Channels ≥ 4 f _C) | $f_{IN} \ge 4 f_{C}$, Note 3 | | -40 | | dB | | NOISE | Output Noise (R, G, B,) | Fullband | | 1.0 | | mV _{RMS} | | X _{TALK} | Crosstalk | Input of 0.5V _{P-P} at 1 MHz
Between any two Channels | | -55 | | dB | | X _{TALK} | A/B MUX Crosstalk | Input of 0.5V _{P-P} at 3.58/4.43MHz | | -54 | | dB | | T _{PD} | Group Delay (R, G, B,) | 100kHz | | 17 | | ns | | ΔT_{PD} | Group Delay Deviation from Flatness | to 10MHz | | 0.5 | | ns | | | (R, G, B,) | to 30MHz | | 4 | | ns | | 48MHz FII | LTER: ML6426-6 | | | - | | 1 | | f _{1dB} | –1dB Bandwidth Flatness (R, G, B,) | 25°C | 25.5 | 30 | | MHz | | f_{c} | –3dB Bandwidth Flatness (R, G, B,) | 25°C | 43.2 | 48 | 52.8 | MHz | | f _{0.8fc} | 0.8 x f _C Attenuation | | | 1.2 | | dB | | f_{SB} | StopBand Rejection (All Channels $\geq 4 f_C$) | $f_{IN} \ge 4 f_C$, Note 3 | | -40 | | dB | | NOISE | Output Noise (R, G, B,) | Fullband | | 1.0 | | mV _{RMS} | | X _{TALK} | Crosstalk | Input of 0.5V _{P-P} at 1 MHz
Between any two Channels | | -55 | | dB | | X _{TALK} | A/B MUX Crosstalk | Input of 0.5V _{P-P} at 3.58/4.43MHz | | -54 | | dB | | T _{PD} | Group Delay (R, G, B,) | 100kHz | | 16 | | ns | | ΔT_{PD} | Group Delay Deviation from Flatness | to 10MHz | | 0.5 | | ns | | | (R, G, B,) | to 40MHz | | 2 | | ns | $[\]textbf{Note 1.} \quad \text{Limits are guaranteed by 100\% testing, sampling, or correlation with worst case test conditions.}$ Note 2. Sustained short circuit protection limited to 10 seconds. Note 3. 38dB is based on tester noise limits. #### **FUNCTIONAL DESCRIPTION** The ML6426 is a triple monolithic continuous time video filter designed for reconstructing video signals from an YUV/RGB video D/A source. The ML6426 is intended for use in AC coupled input and output applications. The filters approximate a 4th-order Butterworth characteristic with an optimization toward low overshoot and flat group delay. All outputs are capable of driving $2V_{P-P}$ into AC coupled 150Ω video loads, with up to 35pF of load capacitance. All outputs are capable of driving a 75Ω load at $1V_{P-P}$. All channels are clamped during sync to establish the appropriate output voltage swing range (DC restore). Thus the input coupling capacitors do not behave according to the conventional RC time constant. In most applications, the ML6426's input coupling capacitors are only $0.1\mu F$. An external CMOS compatible H_{SYNC} pulse is required which is Active High on the SYNC IN Pin. See Figure 2. During sync, the feedback clamp sources/sinks current to restore the DC level. The net result is that the average input current is zero. Any change in the input coupling capacitors' value will linearly affect the clamp response times. Each channel is essentially tilt-free. Each input is clamped by a feedback amp which responds to the output during sync. The ML6426 is robust and stable under all stated load and input conditions. Bypassing both V_{CC} pins directly to ground ensures this performance. **Figure 1. Typical Application Schematic** Figure 2. SYNC IN Pulse Width #### TYPICAL APPLICATIONS ## RECONSTRUCTION FILTER SELECTION FOR HDTV AND VGA SIGNAL FILTERING The filtering requirements for HDTV and VGA standards vary depending on the resolution of the image to be displayed, and its refresh rate. The actual refresh rate of the display is not necessarily the same as the transmission rate of the frames of images. Some formats use a frame rate of 30Hz, but the display of those formats cannot be scanned onto the CRT at 30Hz. Excessive large area flicker would result. Such kinds of flicker can be seen on a PAL display with its brightness set high. To avoid this, the video will need to be stored in a frame buffer. This buffer already exists in the MPEG decoder of HDTV systems, so there is no cost penalty. The buffer is read out at twice the rate as the frame rate for 30Hz systems, thus getting us a refresh rate of 60Hz. Similar things are done for the 24Hz frame rate formats to boost them to a 60Hz refresh rate. | PIXELS | VERTICAL LINES | ASPECT RATIO | PICTURE TRANSMISSION RATE | |--------|----------------|--------------|---------------------------| | 1920 | 1080 | 16:9 | 60I, 30P, 24P | | 1280 | 720 | 16:9 | 60P, 30P, 24P | | 704 | 480 | 16:9 and 4:3 | 60P, 60I, 30P,24P | | 640 | 480 | 4:3 | 60P, 60I, 30P,24P | P=progressive scan, I=interlaced scan Table 1: HDTV / Advanced TV Applications: (From Table 10.3 from ATSC document A54) | STANDARD | PIXELS | VERTICAL
LINES | PICTURE
TRANSMISSION
RATE (Note 2) | DISPLAY
REFRESH
RATE (Note 2) | APPROXIMATE
Horizontal
Rate | APPROXIMATE
SAMPLE
CLOCK | APPROXIMATE
RECONSTRUCTION
FILTER CUTOFF | MICRO LINEAR
FILTER TO USE
(Note 3) | |---------------|--------|-------------------|--|-------------------------------------|-----------------------------------|--------------------------------|--|---| | SMPTE
274M | 1920 | 1080 | 601 | 60Hz | 35.3KHz | 81MHz | 40.5MHz | ML6426-6 | | | 1920 | 1080 | 30P, 24P | 60Hz | 70.6KHz | 162MHz | 81MHz | N/A | | SMPTE | 1280 | 720 | 60P, 30P,
24P | 60Hz | 47.1KHz | 60MHz | 30MHz | ML6426-5
ML6426-4 | | | 704 | 480 (Note 1) | 60I | 60Hz | 15.7KHz | 13.5MHz | 6.75MHz | ML6426-1 | | | 704 | 480 | 60P, 30P,
24P | 60Hz | 31KHz | 27MHz | 13.5MHz | ML6426-2
ML6426-4 | | | 640 | 480 (Note 1) | 601 | 60Hz | 15.7KHz | 24.5MHz | 12MHz | ML6426-2 | | | 640 | 480 | 60P, 30P,
24P | 60Hz | 31KHz | 12.27MHz | 6MHz | ML6426-1 | P=progressive scan, I=interlaced scan, na = not available Note 1: NTSC display rates, can be fed directly into NTSC encoder (set top box) Note 2: 60 Hz also includes 59.94Hz Note 3: custom frequencies ranging \pm 3 to 6MHz can be special cut to order Table 2: Choosing the Correct Reconstruction Filter and Video Amplifier for TV Applications, ML6426 options #### TYPICAL APPLICATIONS (Continued) Pixel clock rates for the output D/A converters can be roughly determined from the Table 1. Don't forget that the deflection system of a CRT display needs retrace time for the vertical and horizontal. This retrace time can vary from one design of an HDTV set to another, as it only involves tradeoffs between the frame buffer in the MPEG decoder and the CRT deflection system. Allowing for 10% retrace time for the vertical and 20% for the horizontal, the appropriate Reconstruction Filter is summarized in Table 2. For VGA or RGB monitors, the following resolutions can use the corresponding Reconstruction Filter and Video Amplifier as shown in Table 3. Figures 4, 5, and 6 show system diagrams when the ML6426 provides a good solution. Figure 7 provides a more detailed description for advanced TV applications using various resolutions for legacy video, SDTV, and HDTV. #### **USING THE ML6426 IN MULTIPLE RESOLUTIONS** Several ML6426 devices can be used in parallel to construct a selectable filter selection block ranging from frequencies between 6.7 MHz to 50MHz. Each ML6426 can be individually controlled via the disable pin. In a parallel configuration, as shown in Figure 3 and 7, several ML6426 devices can be used and selected via general purpose I/O or other logic to perform the proper reconstruction filtering for the resolution of choice. This configuration allows for a minimum of bill of materials and reduces cost. Micro Linears ML6426 EVAL Kit demonstrates multi-resolution designs. Furthermore, since the ML6426 pin-out is identical for all the options, the filters can be interchanged. This allows for ease of product migration to integrate newer resolutions to filter and drive various DAC outputs at different sampling frequencies. | PIXELS | VERTICAL LINES | NAME | REFRESH RATE
(prog except noted) | HORIZONTAL RATE | SAMPLE CLOCK | RECONSTRUCTION
FILTER CUTOFF | MICRO LINEAR
FILTER TO USE | |--------|----------------|------|-------------------------------------|-----------------|--------------|---------------------------------|-------------------------------| | 640 | 480 | VGA | 60Hz | 31.5kHz | 25.175MHz | 12.5MHz | ML6426-2 | | | | VGA | 72Hz | 37.9kHz | 31.5MHz | 15.5MHz | ML6426-3 | | | | VGA | 75Hz | 37.5kHz | 31.5MHz | 15.5MHz | ML6426-3 | | 800 | 600 | SVGA | 56Hz | 35.1kHz | 36MHz | 18MHz | ML6426-3 | | | | SVGA | 60Hz | 37.9kHz | 40MHz | 20MHz | ML6426-3 | | | | SVGA | 72Hz | 48.1kHz | 50MHz | 25MHz | ML6426-3 | | | | SVGA | 75Hz | 46.9kHz | 49.5MHz | 25MHz | ML6426-3 | | 1024 | 768 | XGA | 43Hz | 35.5kHz | 44.9MHz | 23MHz | ML6426-3 | | | | | Interlaced | | | | | | | | XGA | 60Hz | 37.9kHz | 65MHz | 33MHz | ML6426-5 | | | | XGA | 70Hz | 56.5kHz | 75MHz | 37.5MHz | ML6426-5 | | | | XGA | 75Hz | 60kHz | 78.75MHz | 39.4MHz | ML6426-6 | | 1280 | 1024 | SXGA | 75Hz | 80kHz | 135MHz | 68MHz | na | | | | SXGA | 60Hz | | 113MHz | 57MHz | na | | 1600 | 1200 | UXGA | 60Hz | | 166MHz | 83MHz | na | N/A = not available **Figure 3. ATSC Digital Television Application** Figure 4. Digital TV Receiver or HDTV Decoder Box Figure 5. PC Graphics/Frame Grabber Editing Card Figure 6. PC MRI, XRAY, Ultrasound, CT Scan **Figure 7. Typical Applications Schematic** #### PERFORMANCE DATA Figure 8. Passband Flatness all Outputs (Normalized) 6.7 MHz, ML6426CS-1 Figure 10. Passband Flatness all Outputs (Normalized) 24 MHz, ML6426CS-3 Figure 12. Passband Flatness all Outputs (Normalized) 36MHz, ML6426CS-5 Figure 9. Passband Flatness all Outputs (Normalized) 12MHz, ML6426CS-2 Figure 11. Passband Flatness all Outputs (Normalized) 30 MHz, ML6426CS-4 Figure 13. Passband Flatness all Outputs (Normalized) 48MHz, ML6426CS-6 #### PERFORMANCE DATA (Continuied) Figure 14. Frequency Response All Outputs ML6426-CS-1 Figure 15. Group Delay Deviation of Passband, All Outputs ML6426CS-1 Figure 16. Group Delay Deviation All band, All Outputs ML6426CS-1 Figure 17. Frequency Response All Outputs ML6426CS-2 Figure 18. Group Delay Deviation of Passband, All Outputs ML6426CS-2 Figure 19. Group Delay Deviation All Band, All Outputs ML6426CS-2 #### PERFORMANCE DATA (Continuied) Figure 20. Frequency Response All Outputs ML6426CS-3 FREQUENCY (MHz) Figure 21. Group Delay Deviation of Passband, All Outputs ML6426CS-3 Figure 22. Group Delay Dviation All Band, All Outputs ML6426CS-3 Figure 23. Frequency Response All Outputs ML6426CS-4 FREQUENCY (MHz) Figure 24. Group Delay Deviation of Passband, All Outputs ML6426CS-4 Figure 25. Group Delay Deviation All Band, All Outputs ML6426CS-4 #### PERFORMANCE DATA (Continuied) Figure 26. Frequency Response All Outputs ML6426-CS-5 FREQUENCY (MHz) Figure 27. Group Delay Deviation of Passand, All Outputs ML6426CS-5 Figure 28. Group Delay Deviation All band, All Outputs ML6426CS-5 Figure 29. Frequency Response All Outputs ML6426CS-6 FREQUENCY (MHz) Figure 30. Group Delay Deviation of Passand, All Outputs ML6426CS-6 Figure 31. Group Delay Deviation All Band, All Outputs ML6426CS-6 #### PHYSICAL DIMENSIONS #### Package: S16N 16-Pin Narrow SOIC #### ORDERING INFORMATION | PART NUMBER | CUT-OFF FREQUENCY | TEMPERATURE RANGE | PACKAGE | |--|---|---|--| | ML6426CS-1
ML6426CS-2
ML6426CS-3
ML6426CS-4
ML6426CS-5
ML6426CS-6 | 6.7MHz
12MHz
24MHz
30MHz
36MHz
48MHz | 0°C to 70°C
0°C to 70°C
0°C to 70°C
0°C to 70°C
0°C to 70°C | 16-Pin Narrow SOIC (S16N)
16-Pin Narrow SOIC (S16N) | | ML6426CS-15 | 15MHz | 0°C to 70°C | 16-Pin Narrow SOIC (\$16N) | #### Micro Linear Corporation 2092 Concourse Drive San Jose, CA 95131 Tel: (408) 433-5200 Fax: (408) 432-0295 www.microlinear.com © Micro Linear 2000. is a registered trademark of Micro Linear Corporation. All other trademarks are the property of their respective owners. Products described herein may be covered by one or more of the following U.S. patents: 4,897,611; 4,964,026; 5,027,116; 5,281,862; 5,283,483; 5,418,502; 5,508,570; 5,510,727; 5,523,940; 5,546,017; 5,559,470; 5,565,761; 5,592,128; 5,594,376; 5,652,479; 5,661,427; 5,663,874; 5,672,959; 5,689,167; 5,714,897; 5,717,798; 5,742,151; 5,747,977; 5,754,012; 5,757,174; 5,767,653; 5,777,514; 5,793,168; 5,798,635; 5,804,950; 5,808,455; 5,811,999; 5,818,207; 5,818,669; 5,825,165; 5,825,223; 5,838,723; 5,844,378; 5,844,941. Japan: 2,598,946; 2,619,299; 2,704,176; 2,821,714. Other patents are pending. Micro Linear makes no representations or warranties with respect to the accuracy, utility, or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, express or implied, by estoppel or otherwise, to any patents or other intellectual property rights is granted by this document. The circuits contained in this document are offered as possible applications only. Particular uses or applications may invalidate some of the specifications and/or product descriptions contained herein. The customer is urged to perform its own engineering review before deciding on a particular application. Micro Linear assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Micro Linear products including liability or warranties relating to merchantability, fitness for a particular purpose, or infringement of any intellectual property right. Micro Linear products are not designed for use in medical, life saving, or life sustaining applications.