

IC for Control of Lithium-ion Batteries Charging Monolithic IC MM1433

Outline

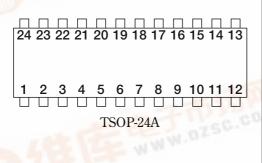
This IC is used to control charging of lithium-ion batteries. This one IC incorporates functions for constant-current and constant-voltage charging and for precharging, for an overcharge timer, battery temperature detection, and other protective functions. It was developed by adding to the previous MM1332 and 1333 the above-described functions.

Features

- 1. Charging voltage accuracy
- 2. Consumption current
- 3. Precharge function.
- 4. Recharge function.
- 5. Overcharge timer.
- 6. Battery temperature detection function.
- 7. We can supply type for one and two cells.

±30mV/cell.

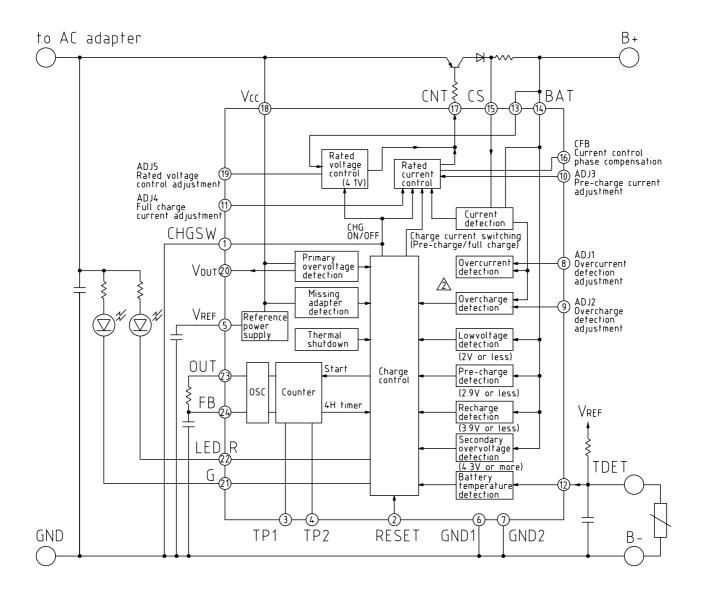
5mA typ.


Package

TSOP-24A

Applications

IC for control of lithium-ion batteries charging.


Pin Assignment

1	CHGSW	13	BAT1
2	RESET	14	BAT2
3	TP1	15	CS
4	TP2	16	CFB
5	VREF	17	CNT
6	GND1	18	Vcc
7	GND2	19	ADJ5
8	ADJ1	20	Vout
9	ADJ2	21	LED G
10	ADJ3	22	LED R
11	ADJ4	23	OSC OUT
12	TDET	24	OSC FB-

Block Diagram

Pin Description

Pin No.	Pin name	I/O	Functions	
			Forced charging OFF pin	
1	CHGSW	Input	L: Forced charging circuit ON (OFF for reset)	
			H: Charging stop is forced	
			Logic reset pin	
2	RESET Input		L: Forced charging circuit ON (start)	
			H: Forced charging circuit OFF	
			Test pin 1	
			Pre-charge timer test pin	
3	TP1	Input/	Inverts while counting (the middle stage of the several FF stages) and output to	
3	111	Output	TP1, to permit monitoring.	
			Also, TP1 output signal is inverted again inside the IC and inputs to the next stage	
			FF. (Timer setting is done by binary counter.)	
		Input/	Test pin 2	
4	TP2	Output	Full charge timer test pin	
		Output	Same structure as TP1	
			Reference power supply output pin	
5	VREF Output		Outputs 1.2V typ. reference voltage. Used for temperature detection reference	
			power supply and ADJ1 - ADJ4 adjustment.	
6	GND1	Input	Ground pin.	
7	GND2	Input	Ground pin.	
8	ADJ1	Input	Overcurrent detection adjustment pin	
	12232		Set so that overcurrent detection does not function. Pin voltage is 1.16V typ.	
			Full charge detection adjustment pin	
			Pin voltage is set at 93mV typ. Full charge detection value can be changed by	
9	ADJ2	ADJ2	Input	adjusting pin voltage with an external resistor, etc.
			Full charge detection is done by comparing ADJ2 pin voltage and 12dB voltage	
			drop value between CS and BAT.	
			Pre-charge current adjustment pin	
			Pin voltage is set at 120mV typ. Pre-charge current can be changed by adjusting	
10	ADJ3	Input	pin voltage with an external resistor, etc.	
			Pre-charge current control is done by comparing ADJ3 pin voltage and 12dB	
			voltage drop value between CS and BAT.	
			Full charge current adjustment pin	
			Pin voltage is set at 0.89mV typ. Full charge current can be changed by adjusting	
	455	Ţ	pin voltage with an external resistor, etc.	
11	ADJ4	Input	Full charge current control is done by comparing ADJ4 pin voltage and 12dB	
			voltage drop value between CS and BAT.	
			When full charge current is controlled to rated current by an adapter, short ADJ4	
			pin and VREF pin so that rated current control does not function in the IC.	

Pin No.	Pin name	I/O	Functions
			Temperature detection input pin
12	TDET	Innut	Apply potential resistance divided by external resistor and thermistor from
12	IDEI	Input	reference voltage when using. Reset state will exist if TDET pin does not reach
			the specified potential.
13	BAT1	Input	Battery voltage input pins
14	BAT2	Input	Detect battery voltage and control charging.
			Current detection pin
15	CS	Input	Detects current by external resistor (between CS and BAT) voltage drop and
			controls charging current.
			Rated current control phase compensation pin
16	CFB	Input	Oscillation is improved by connecting an external capacitor (around 100pf)
			between CFB and CNT for phase compensation.
17	CNT	Output	Charging control output pin
.,	CIVI	Output	Controls external PNP-Tr base for rated current rated voltage charging.
18	Vcc	Input	Power supply input pin
			Rated voltage control adjustment pin
19	ADJ5	Input	Allows fine adjustment of rated voltage value. For example, rated voltage value
			rises by around 15mV (at 4.1V typ.) when ADJ5-GND is shorted.
			Overvoltage detection output pin
20	Vout	Output	For Vcc overvoltage input: L
			For Vcc recommended operating voltage: H
21	LED G	Output	LED C control output pin
		1	NPN-Tr open collector output. Refer to the flow chart for ON/OFF.
22	LED R	Output	LED R control output pin
			NPN-Tr open collector output. Refer to the flow chart for ON/OFF.
			Oscillator output pin
			Timer setting time changes according to oscillation frequency.
23	OSC OUT	Output	Oscillation frequency is determined by an external resistor (connected between
		•	OSC OUT and OSC FB) and capacitor (connected between OSC FB and GND).
			For example, the full charge timer setting is 4H for external resistor of $130k\Omega$ and
			capacitor of 0.01μF.
24	OSC FB-	Input	Oscillator inverted input pin

Pin Description (The values below are average values)

Pin No.	Pin name	Equivalent circuit diagram	Pin No.	Pin name	Equivalent circuit diagram	Pin No.	Pin name	Equivalent circuit diagram
1	CHGSW	100k 10k 10k 10k 10k 10k 10k 10k 10k 10k	10	ADJ3	1.2V	17	CNT	
2	RESET	100k 10k 10k 10k 10k 10k 10k 10k 10k 10k	11	ADJ4	12V \$20k \$58k	19	ADJ5	Vcc 83k 30k
3	TP1	20k	12	TDET	Vcc	20	Vout	VCC 50k\$
4	TP2	20k	13	BAT1) 	21	LED G	
5	VREF	Vcc	14	BAT2		22	LED R	
8	ADJ1	1.2V 5.8k 105k	15	CS	Vcc	23	OSC OUT	
9	ADJ2	12V	16	CFB		24	OSC FB-	

Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Ratings	Unit
Storage temperature	Tstg	-40~+125	°C
Operating temperature	Topr	-20~+70	°C
Power supply voltage	Vcc max.	-0.3~+15	V
Allowable loss	Pd	250	mW

Recommended Operating Conditions

Item	Symbol	Ratings	Unit
Operating temperature	Topr	-20~+70	°C
Charging control operating voltage	Vopr	2.7~5.9	V

Electrical Characteristics (Except where noted otherwise, Ta=25°C, Vcc=5V)

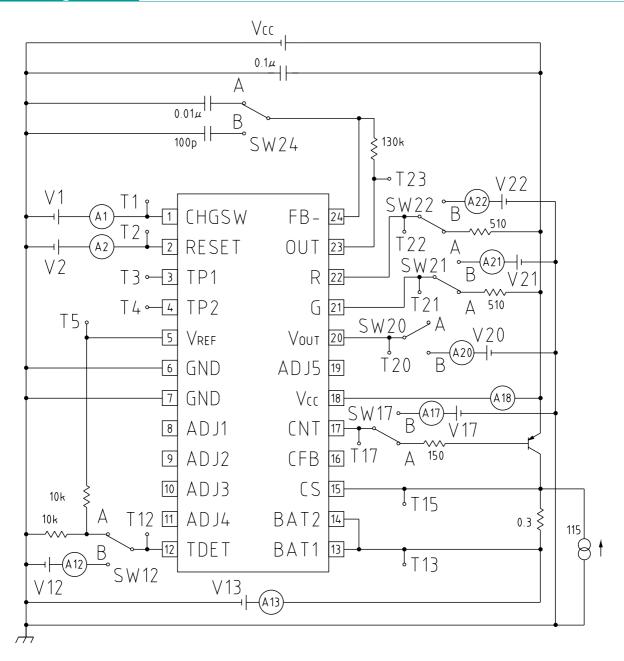
Item	Symbol	Conditions	Measurement circuit	Min.	Тур.	Max.	Unit
Consumption current	Icc		18		5.0	7.0	mA
Reference voltage	$ m V_{REF}$		5		1.207		V
ADP detection voltage L	VADPL	Vcc : H→L	20	2.35	2.45	2.55	V
ADP detection voltage L	Vadplw		20	50	100	150	mV
Hysteresis voltage width	V ADPLW		20	30	100	130	111 V
ADP detection voltage H	VADPH	Vcc : L→H	20	6.1	6.3	6.5	V
ADP detection voltage H	Vadphw		20	50	100	150	mV
Hysteresis voltage width	V ADPHW		20	30	100	150	111 V
Impedance for	Zadpl		20		30		kΩ
ADP detection output L	ZADPL		20		30		K22
BAT pin leak current	I BAT		13, 14, 15			1	μA
BAT pin output voltage	V_{BAT}	Ta=0~+50°C	13	4.070	4.100	4.130	V
CNT pin output voltage	VCNT	ICNT=20mA	17			0.5	V
CHGSW pin input current	Isw		1	40	60	80	μA
CHGSW pin input voltage H	Vswh	CHGSW : OFF	1	0.6		1.20	V
CHGSW pin input voltage L	Vswl	CHGSW: ON	1			0.25	V
RESET pin input current	Ire		2	40	60	80	μA
RESET pin input voltage H	Vreh	Charging control circuit: OFF	2	0.6		1.20	V
RESET pin input voltage L	Vrel	Charging control circuit: ON	2			0.25	V
Current limit 1	V _{L1}	Quick charge	14, 15	0.20	0.22	0.24	V
Current limit 2	V_{L2}	Pre-charge	14, 15	21	26	31	mV
Full charge detection	V_{F}		14, 15	13	18	23	mV
Low voltage detection voltage	$V_{\rm LV}$	Vbat: L→H	13	1.90	2.00	2.10	V

Item	Symbol	Conditions	Measurement circuit	Min.	Тур.	Max.	Unit
Low voltage detection voltage	Vi.vw		13	25	50	100	mV
Hysteresis voltage width	V LV W		15	20	30	100	111 V
Pre-charge detection voltage	V_{P}	Vbat : L→H	13	2.80	2.90	3.00	V
Pre-charge detection voltage	$ m V_{PW}$		13	25	50	100	mV
Hysteresis voltage width	V PW		13	23	50	100	111 V
Re-charge detection voltage	V_R	Vbat : H→L	13	3.85	3.90	3.95	V
Overvoltage detection voltage	Vov	Vbat : L→H	13	4.30	4.35	4.40	V
Battery temperature	$ m V_{TH}$	Low temperature 3°C	12	0.005	0.860	0 00E	v
detection voltage H	VTH	± 3°C detection	12	0.033	0.000	0.000	·
Battery temperature	V _{TL1}	High temperature 43°C ± 3°C	12	0.390	0.413	0.435	V
detection voltage L1	VILI	detection (charging start)					
Battery temperature	V _{TL2}	High temperature 50°C ± 3°C	12	0.335	0.353	0.370	v
detection voltage L2	V 11.2	detection (during charging)	12				
TDET input bias current	Iτ		12		30	150	nA
LED R pin output voltage	VLEDR	ILEDR=10mA	22			0.4	V
LED G pin output voltage	VLEDG	ILEDG=10mA	21			0.4	V
Timer error time	⊿T	Not including external deviation	21, 22	-10		10	%

- Note 1: Current limits 1 and 2 and full charge detection are specified at current detection resistor voltage drop.
- Note 2: If the IC is damaged and control is no longer possible, its safety can not be guaranteed. Please protect with something other than this IC.
- Note 3: Temperature detection is the setting value at B constant 3435 (10KC15-1608 made by Ishizuka Denshi).
- Note 4: Use a capacitor with good temperature characteristics in the oscillator. Capacitor deviation will contribute to timer error.
- Note 5: If the battery overdischarges, charge 1mA for 14 seconds, and if it does not switch to pre-charging during that interval, it means the IC has identified a battery abnormality.

OSC CR Setting Reference Materials

(1) OSCR CR-Oscillation Cycle T Examples

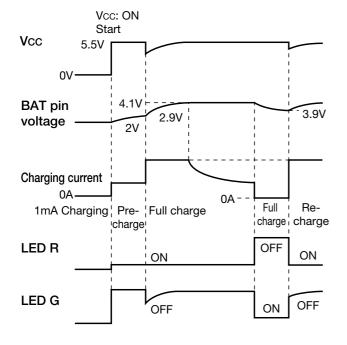

R	75k	100k	120k	130k	150k	200k
0.0047µ	0.47mS	0.63mS	0.75mS	0.82mS	0.94mS	1.26mS
0.0082µ	0.83mS	1.10mS	1.32mS	1.43mS	1.65mS	2.20mS
0.01μ	1.03mS	1.37mS	1.63mS	1.77mS	2.04mS	2.73mS
0.015µ	1.48mS	1.98mS	2.38mS	2.58mS	2.97mS	3.95mS
0.022μ	2.16mS	2.87mS	3.44mS	3.73mS	4.30mS	5.76mS

(2) Timer Times

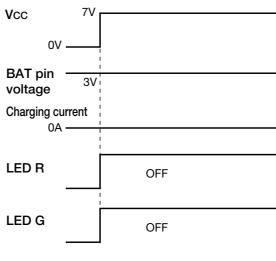
Item	Calculation formula	Examples of calculation (for C = 0.01µ, R = 230k)
Pre-charge timer	$T \times 2^{19}$	15min. 28S
Full charge timer	T× 2 ²³	4h7min.
1mA charge time	T×2 ¹³	14.5S
Full charge detection delay time	T×26	0.11S
Overcurrent detection delay time	T×28	0.45S
Overvoltage detection delay time	T×28	0.45S
Re-charge detection delay time	T× 2 ⁵	56.6mS
LED R blinking cycle	T×2 ¹⁰	1.8S

Note: T: OSC oscillation cycle

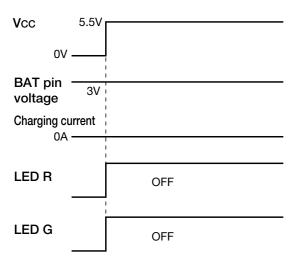
Measuring Circuit

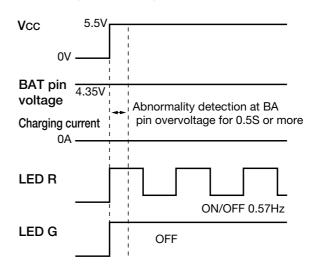

Measurement Procedures

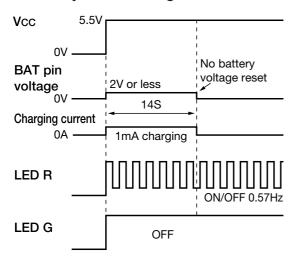
(Except where noted otherwise, Ta = 25° C, Vcc=5V, V1=V2=0V, V13=4.2V, SW12, 17, 20, 22, 24:A, I15=0mA Timers are not in time up state.)


Item	Measurement Procedures
Consumption current	V1 = 1.2V. Measure A18 current value Icc.
Reference voltage	Measure T5 potential V _{REF} .
ADP detection voltage L	Gradually lower Vcc from 5V; Vcc – potential is VADPL when T20 potential drops below 0.5V.
ADP detection voltage L	Gradually lower Vcc – from 2V. Vcc – potential is VADPL2 when T20 potential
Hysteresis voltage width	goes over Vcc – 0.5V. Vadplw = Vadlp2 – Vadpl
ADP detection voltage H	Gradually increase Vcc from 5V. Vcc potential is VADPH when T20 potential drops below 0.5V.
ADP detection voltage H	Gradually lower Vcc from 7V. Vcc potential is VADPH2 when T20 potential
Hysteresis voltage width	goes over Vcc – 0.5V. Vadphw = Vadph – Vadph2
Impedance for ADP Ldetection output	Vcc = 7V, SW20: B, V20 – 0.5V, impedance between T20-GND is ZADPL.
BAT pin leak current	Vcc = 0V, SW17: B, V17 = 0V. Measure A13 current value Ibat.
BAT pin output voltage	Gradually lower V13 from 3.5V. T13 potential is V _{BAT} when T15 – T13 potential difference falls to less than 20mV.
CNT pin output voltage	V13 = 3.5V, SW17: B. Gradually raise V17 from 0V. T17 potential is VCNT when A17 current value 20mA.
CHGSW pin input current	Measure A1 current value Isw.
CHGSW pin input voltage H	V13 = 3.5V. Raise V1 from 0V to 1.2V. CHGSW: ON when A13 is more than
CHGSW pin input voltage L	500mA. CHGSW: OFF when A13 is less than 1mA. Measure Vsw.
RESET pin input current	Measure A2 current value Ire.
RESET pin input voltage H	V13 = 3.5V. Raise V2 from 0V to 1.2V. Charging control circuit: ON when A13 is more
RESET pin input voltage L	than 500mA. Charging control circuit: OFF when A13 is less than 1mA. Measure VRE.
Current limit 1	V13 = 3.5V. T15-T13 potential difference is V _{L1} .
Current limit 2	V13 = 3.5V. T15-T13 potential difference is V ₁₂ .
Full charge detection	SW24: B, I15 = 100mA. Gradually reduce I15 current value after reset. T15 – T13 potential difference is V _F when T21 potential goes under 0.5V.
	Gradually raise V13 from 0V. T13 potential is VLV when A13 current value goes
Low voltage detection voltage	over 50mA.
Low voltage detection voltage	Gradually lower V13 from 2.5V. T13 potential is VLV2 when A13 current value
Hysteresis voltage width	goes over 10mA. $V_{LVW} = V_{LV} - V_{LV2}$
Pre-charge detection voltage	Gradually raise V13 from 2.5V. T13 potential is V _P when A13 current value goes over 500mA.
Pre-charge detection voltage	Gradually lower V13 from 3.5V. T13 potential is VP2 when A13 current value
Hysteresis voltage width	goes under 150mA. $V_{PW} = V_{P} = V_{P2}$
	Wait about 1S at V13 = 4.2V; in full charge detection state, gradually lower V13
Re-charge detection voltage	potential to lower T21 potential to under 0.5V. T13 potential is V _R when T21
	potential is more than Vcc – 0.5V.
Overvoltage detection voltage	Gradually raise V13 from 4V. T13 potential is Vov when T22 potential starts to repeat HI/LOW.
Battery temperature	V13 = 3.5V, SW12: B. Gradually raise V12 from 0.6V. T12 potential is V _{TH}
detection voltage H	when A13 current value goes under 1mA.
Battery temperature	V13 = 3.5V, SW12: B. Gradually raise V12 from 0V. T12 potential is V _{TL1} when
detection voltage L1	A13 current value goes over 500mA.
Battery temperature	V13 = 3.5V, SW12: B. Gradually raise V12 from 0.6V. T12 potential is V _{T12}
detection voltage L2	when A13 current value goes over 1mA.
TDET input bias current	SW12: B, V12 = 0V. Measure A12 current value IT.
LED R pin output voltage	V13 = 3.5V, SW22: B. Gradually raise V22 from 0V. T22 potential is VLEDR
	when A22 current value is 10mA.
LED G pin output voltage	Wait about 1S at V13 = 4.2V; in full charge detection state, make T21 potential 0.5V or less. Next at SW21: B, gradually raise V21 from 0V. T21 potential is VLEDG when A21 current value is 10mA.

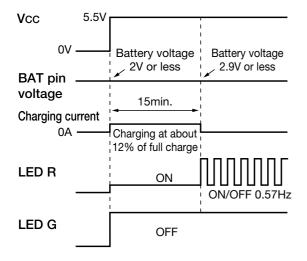
Timing Chart

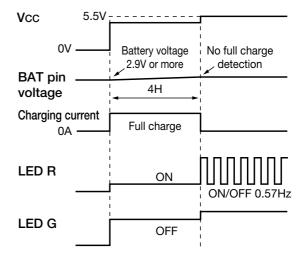

Charging performed normally


Adapter abnormality

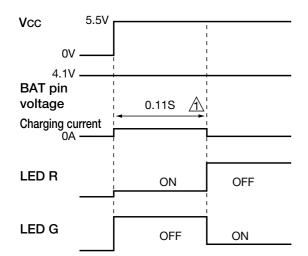

Power supply setting error (temperature detection pin open)

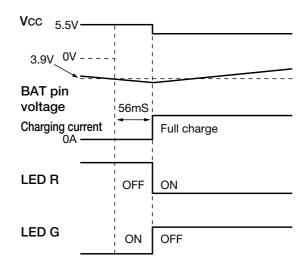
■ Battery overcharge

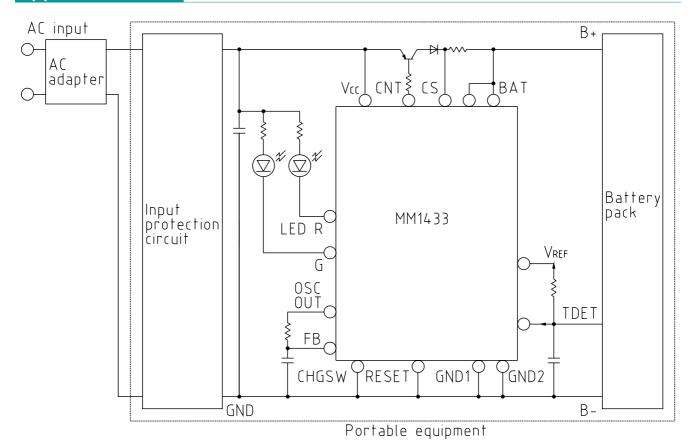

Battery overdischarge

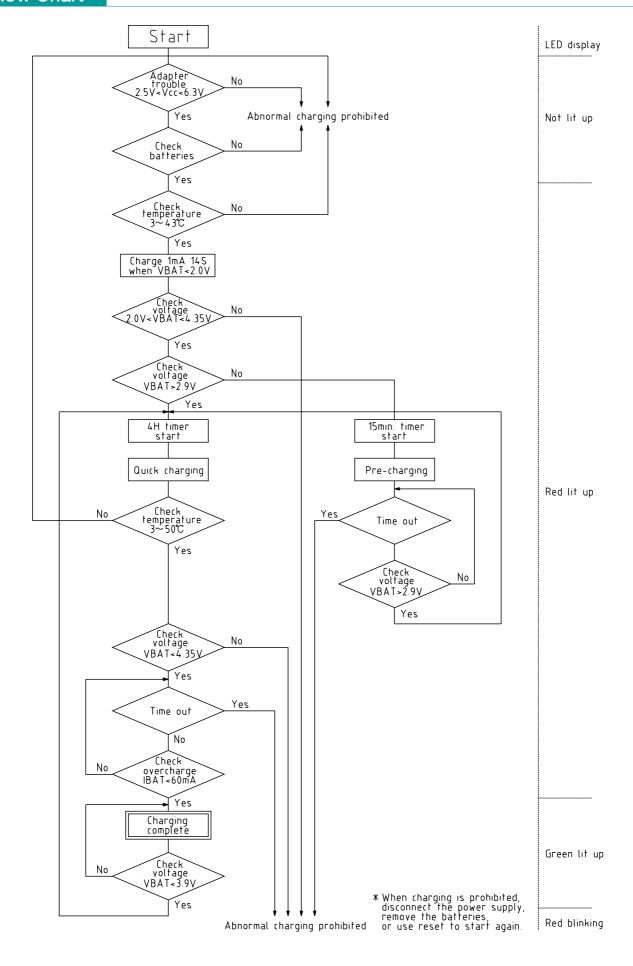

Overcurrent detection

Overcurrent detection does not function

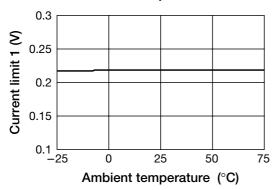

Pre-charge time up


Full charge time up

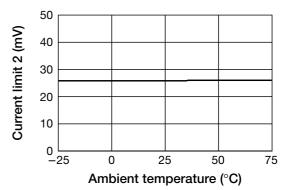

■ Battery full charge


■ Re-charge detection

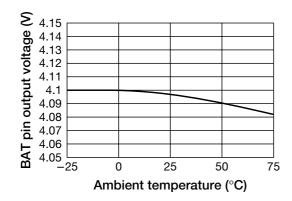
Application Circuit

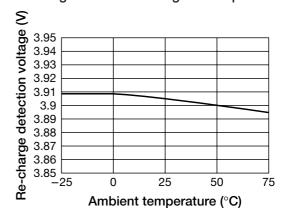


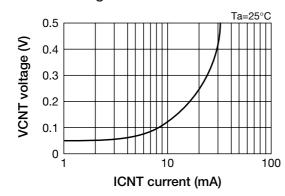
Flow Chart

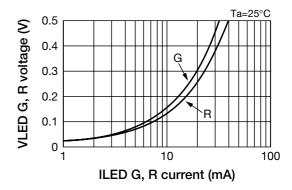


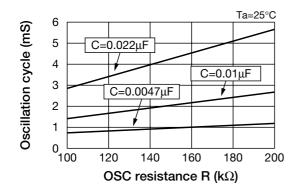
Characteristics

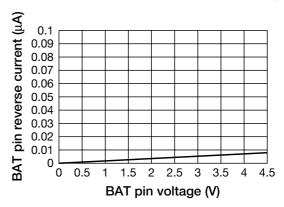

Current limit 1 – Temperature


Current limit 2 – Temperature


■ BAT pin output voltage - Temperature


■ Re-charge detection voltage - Temperature


■ VCNT voltage – ICNT current


■ VLED G, R voltage - ILED G, R current

■ OSC oscillation cycle - CR

■ BAT pin reverse current – BAT pin voltage

