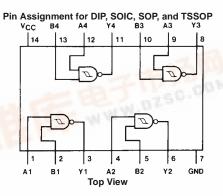


=AIRCHIL

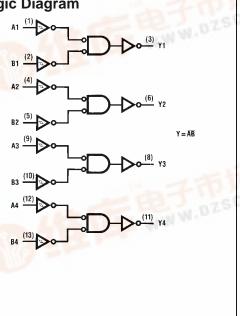
MM74HC132 Quad 2-Input NAND Schmitt Trigger

General Description

Features


- Typical propagation delay: 12 ns
- Wide power supply range: 2V–6V
- Low quiescent current: 20 µA maximum (74HC Series)
- Low input current: 1 µA maximum ■ Fanout of 10 LS-TTL loads
- Typical hysteresis voltage: 0.9V at V_{CC}=4.5V

Ordering Code:


General De The MM74HC132 technology to ach	132 nput NAN escription	D Schmitt silicon-gate CMOS dissipation and high well as the capability	Features ■ Typical propagation delay: 12 ns ■ Wide power supply range: 2V–6V
to drive 10 LS-TTI The 74HC logic fa with the standard	loads. mily is functionally a 74LS logic family. All to static discharg	nd pinout compatible inputs are protected e by internal diode	 Low quiescent current: 20 μA maximum (74HC Series) Low input current: 1 μA maximum Fanout of 10 LS-TTL loads Typical hysteresis voltage: 0.9V at V_{CC}=4.5V
Ordoring (ada:		
Ordering C	Ode: Package Number	560	Package Description
•		14-Lead Small Outline	Package Description Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow Body
Order Number	Package Number		<u> </u>
Order Number MM74HC132M	Package Number M14A	14-Lead Small Outline	Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow Body

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. (Tape and Reel not available in N14A.)

Connection Diagram

Logic Diagram

Supply Voltage (V_{CC})

DC Input Voltage (VIN)

Power Dissipation (P_D)

(Note 3) S.O. Package only

DC Output Voltage (V_{OUT})

Clamp Diode Current (I_{IK}, I_{OK})

DC Output Current, per pin (I_{OUT})

DC V_{CC} or GND Current, per pin (I_{CC})

Storage Temperature Range (T_{STG})

Absolute Maximum Ratings(Note 1) (Note 2)

Lead Temperature (T_L) (Soldering 10 seconds)

-0.5 to +7.0V

–1.5 to $V_{CC}\,\text{+}1.5\text{V}$

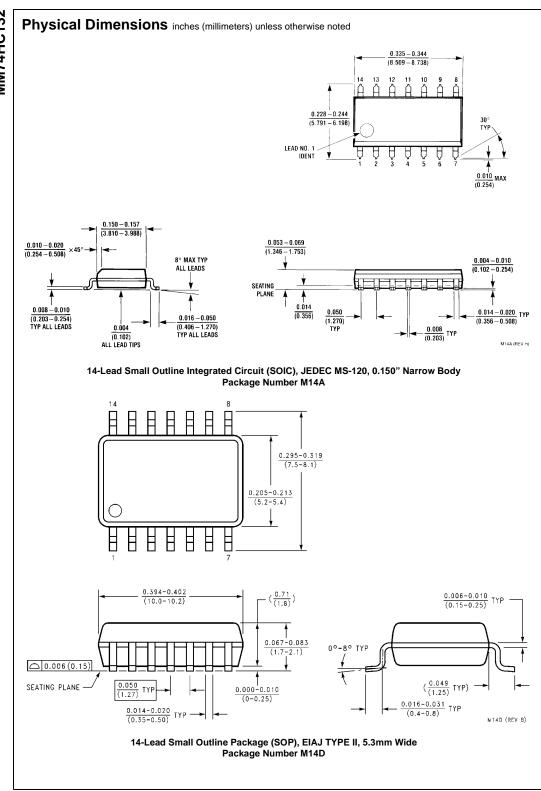
260°C

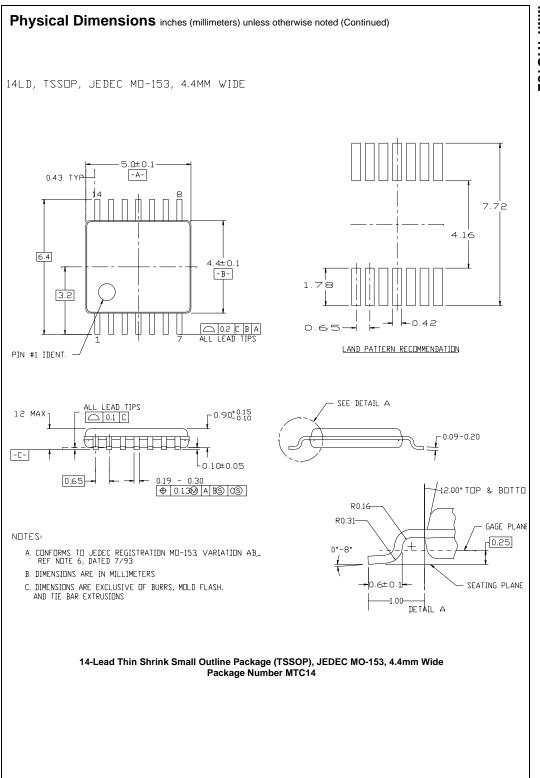
Recommended Operating Conditions

-0.5 to V _{CC} +0.5V	Conditions						
±20 mA		Min	Max	Units			
±25 mA	Supply Voltage (V _{CC})	2	6	V			
±50 mA	DC Input or Output Voltage	0	V _{CC}	V			
-65°C to +150°C	(V _{IN} , V _{OUT})						
	Operating Temperature Range (T _A)	-40	+125	°C			
600 mW	Note 1: Absolute Maximum Ratings are those	e values	beyond wh	ich dam-			
500 mW	age to the device may occur. Note 2: Unless otherwise specified all voltages are referenced to ground.						
	Note 3: Power Dissipation temperature derati			5			

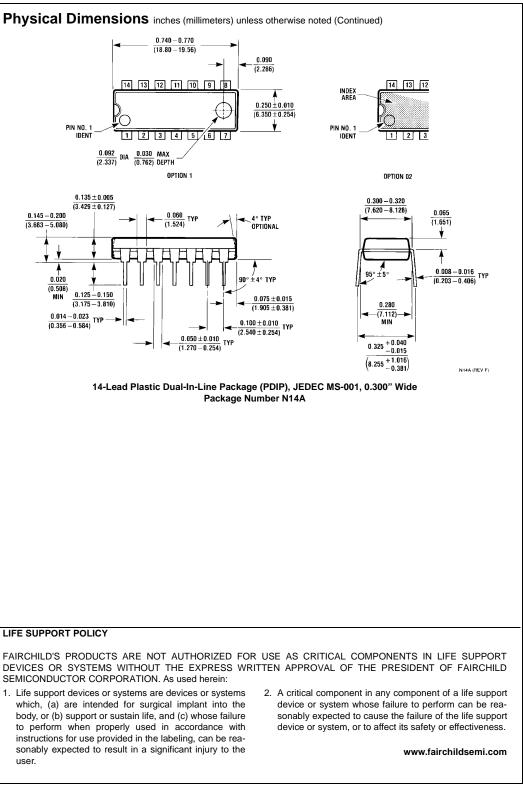
DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	Vcc	$T_A = 25^{\circ}C$		T _A = -40 to 85°C	$T_A = -40$ to $125^{\circ}C$	Units
Symbol	Parameter	Conditions	vcc	Тур	Guaranteed Limits			
V _{T+}	Positive Going	Min	2.0V		1.0	1.0	1.0	V
	Threshold Voltage		4.5V		2.0	2.0	2.0	V
			6.0V		3.0	3.0	3.0	V
		Max	2.0V		1.5	1.5	1.5	V
			4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
V _{T-}	Negative Going	Min	2.0V		0.3	0.3	0.3	V
	Threshold Voltage		4.5V		0.9	0.9	0.9	V
			6.0V		1.2	1.2	1.2	V
		Max	2.0V		1.0	1.0	1.0	V
			4.5V		2.2	2.2	2.2	V
			6.0V		3.0	3.0	3.0	V
V _H	Hysteresis Voltage	Min	2.0V		0.2	0.2	0.2	V
			4.5V		0.4	0.4	0.4	V
			6.0V		0.5	0.5	0.5	V
		Max	2.0V		1.0	1.0	1.0	V
			4.5V		1.4	1.4	1.4	V
			6.0V		1.5	1.5	1.5	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$	2.0V	2.0	1.9	1.9	1.9	V
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	4.5V	4.5	4.4	4.4	4.4	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$	6.0V	6.0	5.9	5.9	5.9	V
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$	2.0V	0	0.1	0.1	0.1	V
	Output Voltage	I _{OUT} ≤ 20 μA	4.5V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$	6.0V	0	0.1	0.1	0.1	V
		I _{OUT} ≤ 4.0 mA	4.5V	0.2	0.26	0.33	0.4	V
		I _{OUT} ≤ 5.2 mA	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input Current	V _{IN} = V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
I _{CC}	Maximum Quiescent	V _{IN} = V _{CC} or GND	6.0V		2.0	20	40	μΑ
	Supply Current	I _{OUT} = 0 μA						


Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.


www.fairchildsemi.com

Sym	bol Parame	ter	Conditions			Тур	Guaranteed Limit		Units	
t _{PHL} , t _{PLH} Maximum Propagatio		n Delay				12	20		ns	
V _{CC} = 2.	Electrical Charae .0V to 6.0V, $C_L = 50 \text{ pF}$, $t_r = t_{f} =$ Parameter		ecified) V _{CC}	T _A =	25°C	T _A = −40 to	85°C	T _A = −55 to	125°C	Unit
Symbol	Farameter	Conditions	*cc	Тур		Guaranteed Limits				onits
t _{PHL} , t _{PLH}	Maximum		2.0V	63	125	158		186		ns
	Propagation Delay		4.5V	13	25	32		37		ns
			6.0V	11	21	27		32		ns
			2.0V	30	75	95		110		ns
t _{TLH} , t _{THL}	Maximum Output									
t _{TLH} , t _{THL}	Maximum Output Rise and Fall Time		4.5V	8	15	19		22		ns
t _{TLH} , t _{THL}			-	8 7	15 13	19 16		22 19		ns ns
		(per gate)	4.5V	-						
t _{TLH} , t _{THL}	Rise and Fall Time	(per gate)	4.5V	7						ns


Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

MM74HC132

MM74HC132

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.