MOTOR0143207供应商 SEMICONDUCTOR TECHNICAL DATA

, 24<u>小时加急出货</u> Order this document 专业PCB打样工厂

by MMDF3207/D

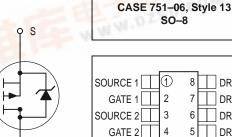
MMDF3207

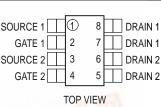
Motorola Preferred Device

DUAL TMOS POWER MOSFET

7.8 AMPERES

20 VOLTS


 $R_{DS(on)} = 33 \text{ m}\Omega$


Product Preview Medium Power Surface Mount Products **TMOS Dual P-Channel Field Effect Transistors**

WaveFET™ devices are an advanced series of power MOSFETs which utilize Motorola's latest MOSFET technology process to achieve the lowest possible on-resistance per silicon area. They are capable of withstanding high energy in the avalanche and commutation modes and the drain-to-source diode has a very low reverse recovery time. WaveFET™ devices are designed for use in low voltage, high speed switching applications where power efficiency is important. Typical applications are dc-dc converters, and power management in portable and battery powered products such as computers, printers, cellular and cordless phones. They can also be used for low voltage motor controls in mass storage products such as disk drives and tape drives. The avalanche energy is specified to eliminate the guesswork in designs where inductive loads are switched and offer additional safety margin against unexpected voltage transients.

- Ultra Low R_{DS(on)} Provides Higher Efficiency and Extends Battery Life in Portable Applications
- Characterized Over a Wide Range of Power Ratings
- Logic Level Gate Drive Can Be Driven by Logic ICs
- Diode Is Characterized for Use In Bridge Circuits
- Diode Exhibits High Speed, with Soft Recovery
- IDSS Specified at Elevated Temperature
- Miniature SO-8 Surface Mount Package Saves Board Space

WWW.DZSC.COM

SO-8

DEVICE MARKING

df.dzsc.com

ORDERING INFORMATION

D3207	Device	Reel Size	Tape Width	Quantity	
D3207	MMDF3207R2	13″	12 mm embossed tape	2500 units	

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice. HDTMOS is a trademark of Motorola, Inc. TMOS is a registered trademark of Motorola, Inc.

referred devices are Motorola recommended choices for future use and best overall value.

MMDF3207

Characteristics		Symbol	Maximum	Unit
Drain–to–Source Voltage Drain–to–Gate Voltage (R _{GS} = 1.0 MΩ) Gate–to–Source Voltage — Continuous		VDSS VDGR VGS	20 12 ±12	V
1 Inch Square @ 10 seconds on FR–4 or G–10 PCB	Thermal Resistance — Junction to Ambient Total Power Dissipation @ $T_A = 25^{\circ}C$ Linear Derating Factor Drain Current — Continuous @ $T_A = 25^{\circ}C$ — Continuous @ $T_A = 70^{\circ}C$ — Pulsed Drain Current (1)	RTHJA PD ID ID ID	62.5 2.0 16 7.8 5.7 40	°C/W Watts mW/°C A A A
1 Inch Square @ Steady State on FR–4 or G–10 PCB	Thermal Resistance — Junction to AmbientTotal Power Dissipation @ $T_A = 25^{\circ}C$ Linear Derating FactorDrain Current — Continuous @ $T_A = 25^{\circ}C$ — Continuous @ $T_A = 70^{\circ}C$ — Pulsed Drain Current (1)	RTHJA PD ID ID IDM	98 1.28 10.2 6.2 4.6 35	°C/W Watts mW/°C A A A
Minimum Pad @ Steady State on FR–4 or G–10 PCB	Thermal Resistance — Junction to Ambient Total Power Dissipation @ $T_A = 25^{\circ}C$ Linear Derating Factor Drain Current — Continuous @ $T_A = 25^{\circ}C$ — Continuous @ $T_A = 70^{\circ}C$ — Pulsed Drain Current (1)	RTHJA PD ID ID ID IDM	166 0.75 6.0 4.8 3.5 30	°C/W Watts mW/°C A A A
Operating and Storage Temperature Range		TJ, Tstg	-55 to 150	°C

MAXIMUM RATINGS (T_J = $25^{\circ}C$ unless otherwise specified)

(1) Repetitive rating; pulse width limited by maximum junction temperature.

MMDF3207

TBD

TBD

TBD

_

μC

ta

tb

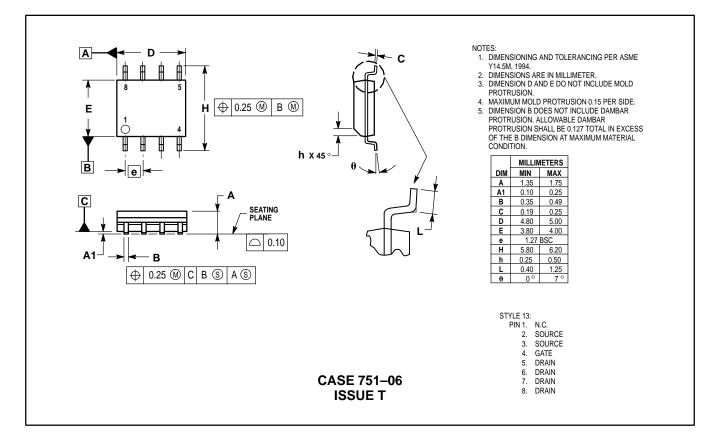
QRR

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain–to–Source Breakdown Voltage ⁽¹⁾ (V _{GS} = 0 Vdc, I _D = 0.25 mAdc) Temperature Coefficient (Positive)		V _(BR) DSS	20 —	— TBD		Vdc mV/°C
Zero Gate Voltage Drain Current $(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$ $(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 55^{\circ}\text{C})$		IDSS	_		1.0 5.0	μAdc
Gate–Body Leakage Current (V _{GS} = \pm 12 Vdc, V _{DS} = 0 Vdc)		IGSS	_	—	100	nAdc
ON CHARACTERISTICS ⁽¹⁾						
Gate Threshold Voltage ⁽¹⁾ (V _{DS} = V _{GS} , I _D = 0.25 mAdc) Threshold Temperature Coefficient (Negative)		V _{GS(th)}	0.6	 TBD	_	Vdc mV/°C
Static Drain-to-Source On-Resistance ⁽¹⁾ ($V_{GS} = 4.5 \text{ Vdc}, I_D = 7.8 \text{ Adc}$) ($V_{GS} = 2.5 \text{ Vdc}, I_D = 6.2 \text{ Adc}$)		R _{DS(on)}		TBD TBD	33 50	mΩ
Forward Transconductance (V_{DS} = 10 Vdc, I_D = 7.8 Adc) ⁽¹⁾		9FS	_	TBD	—	Mhos
OYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	_	TBD	TBD	pF
Output Capacitance	(V _{DS} = 15 Vdc, V _{GS} = 0 V, f = 1.0 MHz)	C _{OSS}	_	TBD	TBD	
Transfer Capacitance	. –	C _{rss}	_	TBD	TBD	
SWITCHING CHARACTERISTICS	2)					
Turn–On Delay Time		^t d(on)	_	TBD	TBD	ns
Rise Time	(V _{DS} = 10 Vdc, I _D = 1.0 Adc, V _{GS} = 10 Vdc,	tr	_	TBD	TBD	
Turn–Off Delay Time	$R_{G} = 6.0 \ \Omega)^{(1)}$	^t d(off)	_	TBD	TBD	
Fall Time		tf	_	TBD	TBD	
Turn–On Delay Time		^t d(on)	_	TBD	TBD	
Rise Time	$(V_{DD} = 10 \text{ Vdc}, I_D = 1.0 \text{ Adc},$	tr	_	TBD	TBD	
Turn–Off Delay Time	$V_{GS} = 4.5 \text{ Vdc},$ R _G = 6.0 Ω) ⁽¹⁾	^t d(off)	_	TBD	TBD	
Fall Time		t _f	—	TBD	TBD	
Gate Charge		Q _T	_	TBD	TBD	nC
	$(V_{DS} = 10 \text{ Vdc}, I_D = 7.8 \text{ Adc}, V_{GS} = 4.5 \text{ Vdc})^{(1)}$	Q ₁	_	TBD	—	
		Q2	_	TBD	—	
		Q ₃	_	TBD	_	
SOURCE-DRAIN DIODE CHARAC	TERISTICS					
Forward On–Voltage	$(I_{S} = 1.7 \text{ Adc}, V_{GS} = 0 \text{ Vdc})^{(1)}$ $(I_{S} = 1.7 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_{J} = 125^{\circ}\text{C})$	V _{SD}	_	TBD TBD	1.2 —	Vdc
Reverse Recovery Time		t _{rr}	_	TBD	_	ns

(1) Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%.

Reverse Recovery Stored Charge


(2) Switching characteristics are independent of operating junction temperatures.

 $(I_S = 1.7 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, \\ dI_S/dt = 100 \text{ A}/\mu s)^{(1)}$

(3) Repetitive rating; pulse width limited by max. junction temperature.

MMDF3207

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights or the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and *i* are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

Customer Focus Center: 1-800-521-6274

 Mfax™: RMFAX0@email.sps.mot.com
 - TOUCHTONE 1–602–244–6609

 Motorola Fax Back System
 - US & Canada ONLY 1–800–774–1848

 - http://sps.motorola.com/mfax/

HOME PAGE: http://motorola.com/sps/

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1, Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488

Mfax is a trademark of Motorola. Inc.

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

