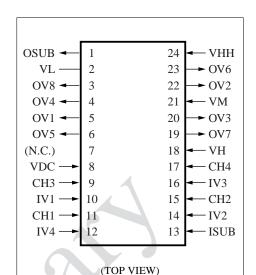
MN3114

Vertical Driver (8 channels) for CCD Area Image Sensors

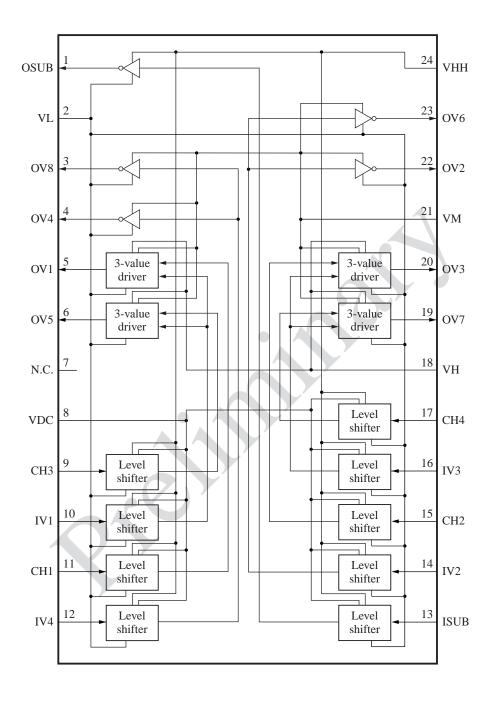
Overview

The MN3114 is an 8-channel vertical driver for twodimensional interline CCD area image sensors that also integrates a single SUB driver channel on the same chip.


Adoption of this IC can reduce both power consumption and parts counts in end products.

Features

• Vertical driver block:


Consists of level shifters and 2-value/3-value output driver circuits.

- SUB driver block: Consists of a level shifter and a 2-value output driver circuit.
- Package: 24-pin SSOP
- Applications
- Digital still cameras, video cameras

Publication date: April 2002

Block Diagram

Note) VDC, VL, and VM: Common power supply

VHH and VH: SUB driver block and vertical driver 3-value independent power supply

Pin Descriptions

Pin No.		Pin name	I/O	Description		
8	VDC	Input block high-level supply voltage	Ι	Low-voltage system high-level input		
18	VH	Vertical driver block high-level supply voltage	Ι	High-voltage system high-level input		
24	VHH	SUB driver block high-level supply voltage	Ι	High-voltage system high-level input		
21	VM	Middle-level supply voltage	Ι	High-voltage system middle-level input		
2	VL	Low-level supply voltage	Ι	High-voltage system low-level input		
10	IV1	Transfer pulse input	Ι	Charge transfer pulse input		
14	IV2	Transfer pulse input	Ι	Charge transfer pulse input		
16	IV3	Transfer pulse input	Ι	Charge transfer pulse input		
12	IV4	Transfer pulse input	Ι	Charge transfer pulse input		
11	CH1	Charge pulse input	Ι	Charge readout pulse input		
15	CH2	Charge pulse input	Ι	Charge readout pulse input		
9	CH3	Charge pulse input	Ι	Charge readout pulse input		
17	CH4	Charge pulse input	Ι	Charge readout pulse input		
13	ISUB	SUB pulse input	Ι	Unneeded charge sweep-out pulse input		
5	OV1	3-value transfer pulse output	0	3-value transfer pulse output (VH, VM, or VL)		
22	OV2	2-value transfer pulse output	0	2-value transfer pulse output (VH or VL)		
20	OV3	3-value transfer pulse output	0	3-value transfer pulse output (VH, VM, or VL)		
4	OV4	2-value transfer pulse output	0	2-value transfer pulse output (VH or VL)		
6	OV5	3-value transfer pulse output	0	3-value transfer pulse output (VH, VM, or VL)		
23	OV6	2-value transfer pulse output	0	2-value transfer pulse output (VH or VL)		
19	OV7	3-value transfer pulse output	0	3-value transfer pulse output (VH, VM, or VL)		
3	OV8	2-value transfer pulse output	0	2-value transfer pulse output (VH or VL)		
1	OSUB	SUB pulse output	0	Unneeded charge sweep-out pulse output (VHH or VL)		
7	N.C.		_			

Operating Mode Table

1. 2-value transfer pulse (vertical driver block)

IV2 IV4	OV2, OV6 OV4, OV8
High	Low
Low	Mid

2. 3-value transfer pulse

CH1	IV1	OV1
CH2	IV3	OV3
СНЗ	IV1	OV5
CH4	IV3	OV7
High	High	Low
	Low	Mid
Low	High	Low
	Low	High

Note) IV1, IV2, IV3, IV4, CH1, CH2

High: VDC

Low: GND

OV1, OV2, OV3, OV4, OV5, OV6, OV7, OV8

High: VH

Mid: VM

Low: VL

3. Unneeded charge sweep-out pulse (SUB driver block)

ISUB	OSUB	
High	Low	
Low	High	
Note) ISUB		
High: VDC		
Low: GND		
OSUB		
High: VHH		
Low: VL		

	Timing Cha							
1.	2-value trans	sfer pulse						11.1
	IV2							— High — Low
								— Mid
	OV2, OV6							— Low
2.	2-value trans	sfer pulse						
	IV4							— High — Low
							— —	— Mid
	OV4, OV8							Low
3.	3-value trans	sfer pulse						
	IV1					П		— High — Low
	CT 14							— Low — High
	CH1							— Low
	CH3							High Low
				<u> </u>				— High
	OV1							— Mid — Low
								High
	OV5							— Mid
								Low
4.	3-value trans	sfer pulse						
	IV3							— High — Low
	CH2							— High
					, 			— Low — High
	CH4							Low
	OV3							—— High —— Mid
	013							Low
	01/7							High —— Mid
	OV7							Low
_								
5.	SUB pulse							- High
	ISUB							— Low
	OSUB		\Box					— High
								— Low

Electrical Characteristics

1. Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage 1	VHH-VL	33	V
Supply voltage 2	VH-VL	30	V
Supply voltage 3	VM	VL to 6	V
Supply voltage 4	VDC	0 to 5	V
Negative supply voltage	VL	-12 to 0	V
Input voltage	put voltage VI VL- 0.3 to VDC+0.3		V
Input and output clamp diode current	IIC, IOC	±10	mA
Maximum DC load current	IODC	±3	mA
Maximum load capacitance	CL	(5 500) *	pF/pin
Power dissipation	PD	(180) *	mW
Operating temperature	Topr	-20 to +75	°C
Storage temperature	Tstg	-50 to +125	°C

Note) 1. The absolute maximum ratings are limit values for stresses applied to the chip so that the chip will not be destroyed. Operation is not guaranteed within these ranges.

2. *: Preliminary values

2. Operating Conditions at $T_a = -20^{\circ}C$ to +75°C

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Negative supply voltage	VL		-10	—	-4	V
Supply voltage 1	VDC •		2.7	—	3.6	V
Supply voltage 2	VHH-VL		VH-VL		31	V
Supply voltage 3	VH-VL			—	28	V
Supply voltage 4	VHH-VM		15	—	18	V
Supply voltage 5	VM					V
Input frequency	fIN			—	500	kHz

3. DC Characteristics at VHH = 15.0 V, VH = 15.0 V, VL = -7.5 V, VDC = 2.7 V to 3.6 V, T_a = -20° C to $+75^{\circ}$ C

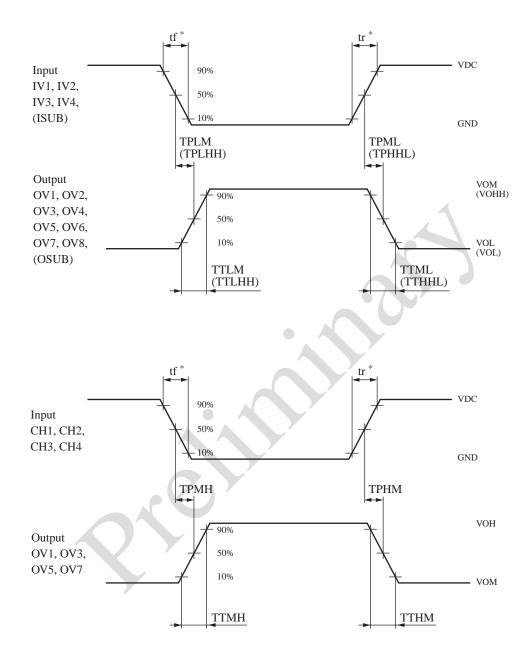
Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Quiescent supply current	IDDST		—	—	—	mA	
		VI = GND, VDC = 3.0 V	—	—	(5) *		
Operating supply current	IDDDYN	■ Test conditions See 2. Input pulse timing chart. VI = GND or VDC			(7) *	mA	
1) Input pins: IV1, IV2, IV3, IV4, CH1, CH2, CH3, CH4, ISUB							
High-level voltage	VIH	VDC = 3.0 V	$VDC \times 0.7$		VDC	V	

High-level voltage	VIH	VDC = 3.0 V	$VDC \times 0.7$		VDC	v
Low-level voltage	VIL		0.0	—	$VDC \times 0.3$	V
Input leakage current	IILK	VI = 0 to VDC	(-1.0) *		(1.0) *	μA

Note) *: Preliminary values

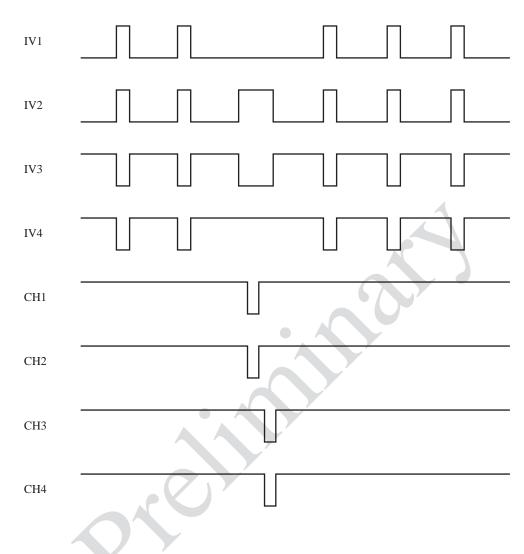
Electrical Characteristics (continued)

 DC Characteristics (continued) at VHH = 15.0 V, VH = 15.0 V, VL = -7.5 V, VDC = 2.7 V to 3.6 V, T_a = -20°C to +7 	3.
---	----


		, ,	- , -		, a	
Parameter	Symbol	Condition	Min	Тур	Max	Unit
2) Output pins 1 (2-value outp	ut): OV2, OV	4, OV6, OV8				•
Mid-level output voltage	VOM1	IOM1 = -1 mA	- 0.1		VM	V
Low-level output voltage	VOL1	IOL1 = 1 mA	VL		-7.4	V
Mid-level output on resistance	RONM1	IOM1 = -50 mA	_	_	40	Ω
Low-level output on resistance	RONL1	IOL1 = 50 mA	_		30	Ω
3) Output pins 2 (3-value outp	ut): OV1, OV	3, OV5, OV7				
High-level output voltage	VOH2	IOH2 = 1 mA	14.9		VH	V
Mid-level output voltage	VOM2	IOM2 = 1 mA	- 0.1	_	VM	V
Low-level output voltage	VOL2	IOL2 = 1 mA	VL	- 4	-7.4	V
Output on resistance (high level)	RONH2	IOH2 = 50 mA	_	-	40	Ω
Output on resistance (mid level)	RONM2	$IOM2 = \pm 50 \text{ mA}$	_	<u> </u>	30	Ω
Output on resistance (low level)	RONL2	IOL2 = 50 mA	_	—	30	Ω
4) Output pins 3 (SUB output)	OSUB					
High-level output voltage	VOHH3	IOHH3 = -1 mA	14.9	7 –	VHH	V
Low-level output voltage	VOL3	IOL3 = 1 mA	VL	_	-7.4	V
Output on resistance (high level)	RONHH3	IONHH3 = -50 mA	-	_	40	Ω
Output on resistance (low level)	RONL3	IOL3 = 50 mA			30	Ω

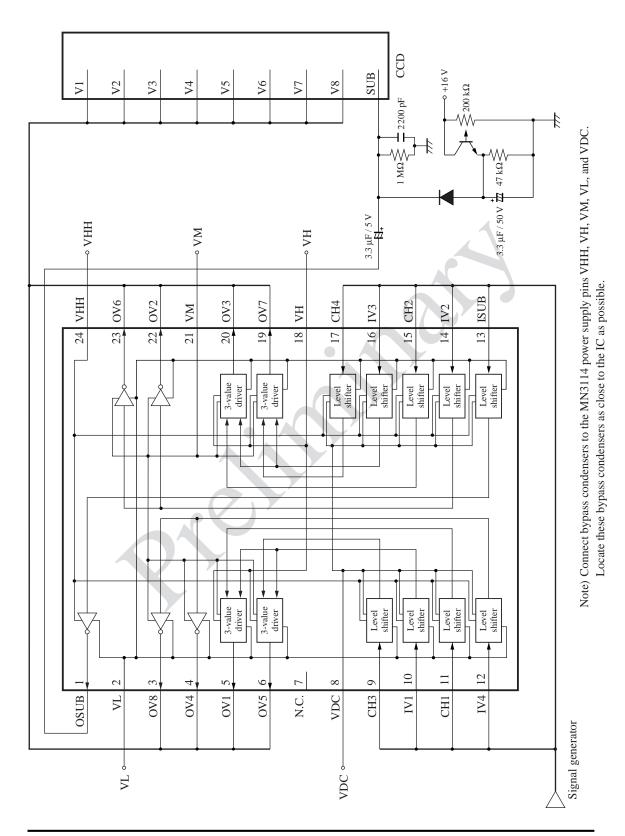
4. AC Characteristics at VHH = 15.0 V, VH = 15.0 V, VL = -7.5 V, VDC = 2.7 V to 3.6 V, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$

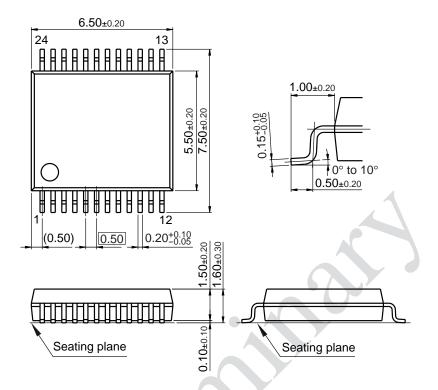
Parameter	Symbol	Condition	Min	Тур	Max	Unit
1) Output pins 1 (2-value outp	ut): OV2, OV	74, OV6, OV8				
Transmission delay time	TPLM TPML	No load	_	100	200	ns
Rise time Fall time	TTLM TTML			200	300	ns
2) Output pins 2 (3-value outp	ut): OV1, OV	/3, OV5, OV7				
Transmission delay time	TPLM TPML	No load	_	100	200	ns
	TPMH TPHM		_	100	200	
Rise time Fall time	TTLM TTML		_	200	300	ns
	TTMH TTHM		_	200	300	
3) Output pins 3 (SUB output)	: OSUB					
Transmission delay time	TPLHH TPHHL	No load	_	100	200	ns
Rise time Fall time	TTLHH TTHHL		_	200	300	ns


Test Conditions

1. Transmission delay time, rise time, and fall time

Note) *: tr = tf = 20 ns (typ.)


- Test Conditions (continued)
- 2. Input pulse timing chart


Usage Notes

- 1. If the SUB driver is not used:
 - 1) Connect VHH to VH.
- 2) Connect ISUB to VDC.
- 3) Leave OSUB (pin 1) open.
- Connect bypass condensers to the MN3114 power supply pins VHH, VH, VM, VL, and VDC. Locate these bypass condensers as close to the IC as possible.
- Guarantee period after opening the sealed packing: The guarantee period after opening the sealed desiccated packing is three weeks under environment temperature and humidity conditions of 30°C and 70% RH.
- 4. The recommended reflow temperature is 230°C.

Application Circuit Example

- Package Dimensions (unit: mm)
- SSOP024-P-0300C (Lead-free package)

Request for your special attention and precautions in using the technical information and semiconductors described in this material

- (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
- (2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
- (3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).

Consult our sales staff in advance for information on the following applications:

- Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.
- (4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products.
- (6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
- (7) No part of this material may be reprinted or reproduced by any means without written permission from our company.

Please read the following notes before using the datasheets

- A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications.
 Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice.
 Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities.
- B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material.
- C. These materials are solely intended for a customer's individual use. Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.