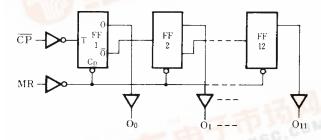
查询MN4040B供应商

捷多邦,专业PCB打样工厂,24小时加

MN4040B/MN4040BS

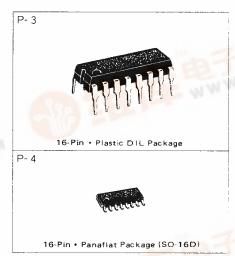

急出货

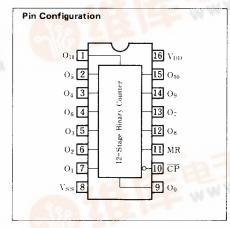
12-Stage Binary Counters

Description

The MN4040B/S are 12-stage binary ripple counters with a clock input. The reset input and outputs are fully buffered. The counter advances on the negative going edge of the clock input. A High on the MR input clears all counter stages and forces all outputs $(O_0 \sim O_{1\,1})$ Low, independent of the clock input. These are suitable for frequency dividers and center-control circuits, and are equivalent to MOTOROLA MC14040B and RCA CD4040B.

Logic Diagram




Pin Explanation

CP : Clock input (_)

MR: Reset input

 $O_0\!\sim\!O_{11}$: Output (12 Bits)

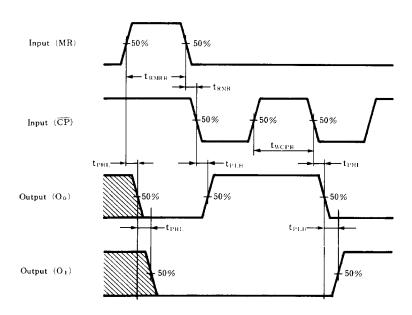
■ Maximum Ratings (Ta=25°C)

Supply Voltage		Symbol	Ratings	Unit	
		$V_{ m DD}$ =	-0.5~+18	V	
Input Voltage		V_1	$-0.5 \sim V_{DD} + 0.5^*$	V	
Output Voltage		V_{O}	-0.5~V _{DD} +0.5*	V	
Peak Input · Output Current		$\pm I_1$	max. 10	mA	
Power Dissipation Ta=-40~+60℃		D	max. 400		
(per package)	Ta=+60~+85℃	P_{D}	Decrease up to 200mW rating at 8mW/°C	mW	
Power Dissipation (per output terminal)		P_{D}	max. 100	mW	
Operating Ambient Temperature		Торг	-40~+85	°C	
Storage Temperature		Tstg	-65~+150	°C	

V + 0.5 V should be under 18V

— 109 —

\blacksquare DC Characteristics $(V_{SS}\!=\!\!0V)$


	$V_{\rm DD}$	Sym-			Ta == -	-40℃	$T_a =$	25℃	Ta=	85℃	Unit
Item	V	bol	Conditions		min.	max.	min.	max.	min.	max.	Unn
Quiescent Power Supply Current	5			-	_	20		20		150	
	10	I_{DD}	$V_{\rm I} = V_{\rm SS}$ or	V_{DD}	_	40	_	40	_	300	μ A
	15					80	_	80		600	
	5				_	0.05	_	0.05	-	0.05	
Output Voltage	10	Vol.	$V_1 = V_{SS}$ or	V DD		0.05	-	0.05		0.05	V
Low Level	15		$ 1_{\rm O} < 1\mu\text{A}$		_	0.05		0.05		0.05	
	5				4.95	_	4.95	_	4.95		3.7
Output Voltage	10	V _{OH}	$V_1 = V_{SS}$ or V_{DD}		9.95	_	9.95		9.95		$ \mathbf{v} $
High Level	15		$ I_{\rm O} < 1 \mu A$		14.95		14.95	_	14.95		
	5			Vo=0.5V or 4.5V		1.5		1.5		1.5	1.5 3 V 4
Input Voltage	10	V _{11.}	$ I_{\rm o} < 1 \mu A$	Vo=1V or 9V	_	3	_	3	-	3	
Low Level	15			V ₀ =1.5V or 13.5V		4		4		4	
	5			V ₀ =0.5V or 4.5V	3.5	_	3.5		3.5	_	
Input Voltage High Level	10	$V_{\rm IH}$	$I_{O} < 1\mu A$	Vo=1V or 9V	7		7		7	-	V
Iliku Fevet	15			V ₀ =1.5V or 13.5V	11_		11		11		
	5		$V_0 = 0.4V$	V ₁ =0 or 5V	0.52	_	0.44	_	0.36	_	
Output Current Low Level	10	I _{OL}	Vo=0.5V,	$V_I = 0$ or $10V$	1.3	-	1.1		0.9	_	mA
Low Level	15		$V_0 = 1.5 V$	$V_I = 0$ or $15V$	3.6		3		2.4		
	5		$V_0 = 4.6 V$	$V_1 = 0$ or $5V$	0.52	_	0.44	_	0.36	_	
Output Current	10	-1_{OH}	$V_0 = 9.5V$,	$V_i = 0$ or $10V$	1.3	-	1.1	-	0.9	-	mA
High Level	15		$V_0 = 13.5 \text{ V}$	$V_{\rm I} = 0 \text{ or } 15 \text{V}$	3.6		3		2.4		
Output Current High Level	5	-I _{OH}	$V_0 = 2.5 V$	V ₁ =0 or 5V	1.7		1.4	_	1.1		mA
Input Leakage Current	15	$\pm I_1$	$V_1 = 0$ or 1	5V		0.3		0.3		1	μA

Item	$V_{\mathrm{DD}}\left(\mathbf{V}\right)$	Symbol	min.	typ.	max.	Unit
	5			60	180	
Output Rise Time	10	t _{TLH}	_	30	90	ns
	15		_	20	60	
	5	t _{TH1} .	_	60	180	
Output Fall Time	10		_	30	90	ns
Output 142 12	15		_	20	60	
	5		_	105	315	
Propagation Delay Time	10	t _{PLH}	_	50	150	ns
$\overline{CP} \rightarrow O_0 (L \rightarrow H)$	15		_	35	105	
Dalay Time	5	t _{PHL}		105	315	ns
Propagation Delay Time	10		_	45	135	
$\overline{CP} \rightarrow O_0 (H \rightarrow L)$	15		_	30	90	
	5	t _{PLH}		70	210	ns
Propagation Delay Time	10		_	25	75	
$O_n \rightarrow O_{n-1}$ (L \rightarrow H)	15		_	20	60	
	5	t _{PH1.}		80	240	
Propagation Delay Time	10		-	30	90	ns
$On \rightarrow On \cdot 1 (H \rightarrow L)$	15		_	20	60	_

Item	$V_{\mathrm{DD}}\left(\mathbf{V}\right)$	Symbol	min.	typ.	max.	Unit
Propagation Delay Time	5			180	540	
	10	t _{PHL}	_	90	270	ns
$MR \rightarrow On (H \rightarrow L)$	15		-	70	210	
	5			25	75	
Minimum Clock Pulse Width	10	twcpH	_	15	45	ns
	15		_	10	30	
	5		_	65	195	
Minimum Reset Pulse Width	10	t _{wmr}	_	50	150	ns
	15		_	45	135	
	5		-	60	180	
Reset Recovery Time	10	$t_{ m RMR}$	_	35	105	ns
	15			25	75	
	5	fmax	5	10	_	MHz
Maximum Clock Frequency	10		13	25	_	
	15		18	35	_	
Input Capacitance	1	Cı		_	7.5	pF

• Dynamic Signal Waveforms

Waveforms showing propagation delays for MR to 0_n and \overline{CP} to 0_o , minimum MR and \overline{CP} pulse widths and recovery time for MR

