

MPA 201

0.5 Watts, 12.5 Volts, Class A Linear to 500 MHz 50Ω Hybrid Amplifier

GENERAL DESCRIPTION

The MPA 201 is a COMMON EMITTER amplifier device designed for broadband performance to 500 MHz in a format suitable for stripline assembly and high reliability applications. Its wide dynamic range and flexibility commend it for a broad spectrum of instrumentation, receiver and transmitter applications. It utilizes gold metalization and diffused ballasting to provide high reliability and supreme ruggedness.

ABSOLUTE MAXIMUM RATINGS

Maximum Power Dissipation @ 25°C

6.0 Watts

Maximum Voltage and Current

Collector to Emitter Voltage **BVces** BVebo Emitter to Base Voltage Ic Collector Current **Maximum Temperatures** Storage Temperature **Operating Junction Temperature**

40 Volts 3.5 Volts 300 mAmps

 $-55 \text{ to} + 200^{\circ}\text{C}$

 $+200^{\circ}C$

CASE OUTLINE

55AU, Style 2

ELECTRICAL CHARACTERISTICS @ 25 °C

SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Pout Pin Pg Ft VSWR	Power Out Power Input Power Gain Transition Frequency Load Mismatch Tolerance	F = 500 MHz Ic = 140 mA Vcc = 12.5 Volts Vce = 20 V, Ic = 140 A	0.5 12 3.4	0.8 13 3.7	0.02	Watts Watts dB GHz

BVebo BVces BVceo h _{FE} Cob θjc	Emitter to Base Breakdown Collector to Emitter Breakdown Collector to Emitter Breakdown DC Current Gain Capacitance Thermal Resistance	Ie = 1 mA Ic = 10 mA Ic = 10 mA Vce = 5 V, Ic = 100 mA Vcb = 28V, f = 1 MHz	3.5 50 22 20	2.0	3.0 33	Volts Volts Volts pF °C/W	
--	---	---	-----------------------	-----	-----------	---------------------------------------	--

Initial Issue July 1997

GHZ TECHNOLOGY INC. RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE. GHZ RECOMMENDS THAT BEFORE THE PRODUCT(S) DESCRIBED HEREIN ARE WRITTEN INTO SPECIFICATIONS, OR USED IN CRITICAL APPLICATIONS, THAT THE PERFORMANCE CHARACTERISTICS BE VERIFIED BY CONTACTING THE FACTORY.

GHz Technology Inc. 3000 Oakmead Village Drive, Santa Clara, CA 95051-0808 Tel. 408 / 986-8031 Fax 408 / 986-8120