One Watt High Voltage Transistor

NPN Silicon

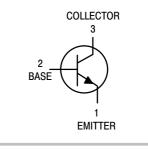
Features

• Pb-Free Packages are Available*

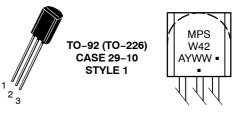
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	300	Vdc
Collector - Base Voltage	V _{CBO}	300	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	Ι _C	500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	1.0 8.0	W mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above 25°C	PD	2.5 20	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	125	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	50	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.



ON Semiconductor®

http://onsemi.com

MPSW42	= Device Code
А	= Assembly Location
Y	= Year
WW	= Work Week
-	Dh. Eroo Dookogo

= Pb-Free Package

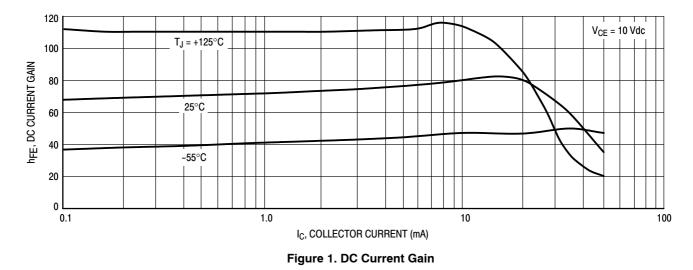
(Note: Microdot may be in either location)

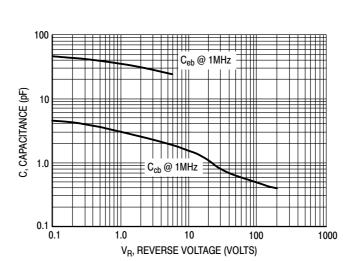
ORDERING INFORMATION

Device	Package	Shipping [†]
MPSW42	TO-92	5,000 Units/Box
MPSW42G	TO–92 (Pb–Free)	5,000 Units/Box
MPSW42RLRA	TO-92	2,000/Tape & Reel
MPSW42RLRAG	TO–92 (Pb–Free)	2,000/Tape & Reel

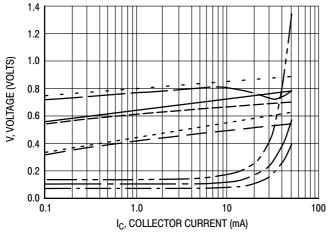
+ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

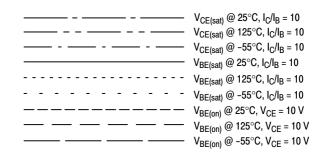

MPSW42

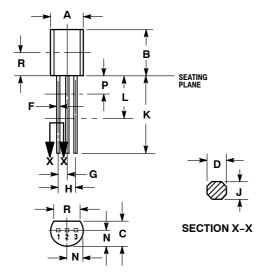

ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	·	•	•	
Collector – Emitter Breakdown Voltage (Note 1) $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	300	_	Vdc
Collector-Base Breakdown Voltage $(I_C = 100 \ \mu Adc, I_E = 0)$	V _{(BR)CBO}	300	_	Vdc
Emitter–Base Breakdown Voltage (I _E = 100 μAdc, I _C = 0)	V _{(BR)EBO}	6.0	_	Vdc
Collector Cutoff Current ($V_{CB} = 200 \text{ Vdc}, I_E = 0$)	I _{CBO}	_	0.1	μAdc
Emitter Cutoff Current ($V_{EB} = 6.0 \text{ Vdc}, I_C = 0$)	I _{EBO}	_	0.1	μAdc
ON CHARACTERISTICS	·	•	•	
$ \begin{array}{l} \text{DC Current Gain} \\ (I_{C} = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}) \\ (I_{C} = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}) \\ (I_{C} = 30 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}) \end{array} $	h _{FE}	25 40 40	- - -	-
Collector-Emitter Saturation Voltage (I _C = 20 mAdc, I _B = 2.0 mAdc)	V _{CE(sat)}	_	0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 20 mAdc, I _B = 2.0 mAdc)	V _{BE(sat)}	-	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS		•	•	•
Current–Gain – Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 20 MHz)	f _T	50	-	MHz
Collector Capacitance (V _{CB} = 20 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	-	3.0	pF


 $\label{eq:VCB} \begin{array}{c} (V_{CB} = 20 \mbox{ Vdc}, \mbox{ I}_E = 0, \mbox{ f} = 1.0 \mbox{ MHz}) \\ \end{tabular}$ 1. Pulse Test: Pulse Width $\leq 300 \mbox{ }\mu s, \mbox{ Duty Cycle } \leq 2.0\%. \end{array}$

MPSW42





PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-10 ISSUE AL

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M. 1982

 CONTROLLING DIMENSION: INCH.
CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. DIMENSION F APPLIES BETWEEN P AND L.

DIMENSIONS D AND J APPLY BETWEEN L AND K MIMIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN MAX	
Α	0.175	0.205	4.44	5.21
В	0.290	0.310	7.37	7.87
С	0.125	0.165	3.18	4.19
D	0.018	0.021	0.457	0.533
F	0.016	0.019	0.407	0.482
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.018	0.024	0.46	0.61
Κ	0.500		12.70	
L	0.250		6.35	
Ν	0.080	0.105	2.04	2.66
Ρ		0.100		2.54
R	0.135		3.43	

STYLE 1:

PIN 1. EMITTER 2. BASE

COLLECTOR 3.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILC does not convey any license under its patent rights or the rights of others. SCILC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications. Buyer purchase or use SCILLC products for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative