Cascadable Silicon Bipolar MMIC Amplifier

Technical Data

Features

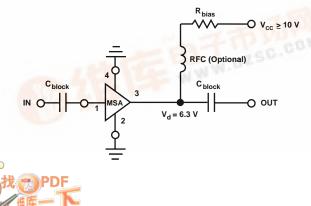
- Cascadable 50 Ω Gain Block
- **3 dB Bandwidth:** DC to 4.0 GHz
- 8.5 dB Typical Gain at 1.0 GHz
- 16.0 dBm Typical P_{1 dB} at 1.0 GHz
- Unconditionally Stable (k>1)
- Hermetic Metal/Beryllia Microstrip Package

Description

The MSA-0420 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a hermetic, high reliability package. This MMIC is designed for use as a general purpose 50Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in industrial and military applications.


The MSA-series is fabricated using HP's 10 GHz fT, 25 GHz f MAX, silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

MSA-0420


专业PCB打样工

200 mil BeO Package

24小时加急出货

Typical Biasing Configuration

Parameter	Absolute Maximum ^[1]				
Device Current	120 mA				
Power Dissipation ^[2,3]	850 mW				
RF Input Power	+13dBm				
Junction Temperature	200°C				
Storage Temperature	−65 to 200°C				

Thermal Resistance^[2,4]: $\theta_{jc} = 40^{\circ}C/W$

Notes:

1. Permanent damage may occur if any of these limits are exceeded.

2. $T_{CASE} = 25^{\circ}C.$

3. Derate at 25 mW/°C for $T_C > 166$ °C.

 $\label{eq:q_constraint} \begin{array}{l} \text{4. The small spot size of this technique results in a higher, though more} \\ \text{accurate determination of q_{jc} than do alternate methods. See MEASURE-MENTS section "Thermal Resistance" for more information. \\ \end{array}$

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions:	Units	Min.	Тур.	Max.	
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz	dB	7.5	8.5	9.5
ΔG_P	Gain Flatness	f = 0.1 to 2.5 GHz	dB		± 0.6	± 1.0
f _{3 dB}	3 dB Bandwidth		GHz		4.3	
VSWR	Input VSWR	f = 0.1 to 2.5 GHz			1.7:1	
VOVIL	Output VSWR	f = 0.1 to 2.5 GHz			1.8:1	
NF	50Ω Noise Figure	f = 1.0 GHz	dB		6.5	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm	14.0	16.0	
IP ₃	Third Order Intercept Point	f = 1.0 GHz	dBm		30.0	
tD	Group Delay	f = 1.0 GHz	psec		140	
Vd	Device Voltage		V	5.7	6.3	6.9
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Note:

1. The recommended operating current range for this device is 40 to 110 mA. Typical performance as a function of current is on the following page.

Freq.	S ₁₁		\mathbf{S}_{21}		S ₁₂			S ₂₂		
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	.25	177	8.6	2.70	175	-16.4	.151	1	.03	-30
0.2	.25	173	8.6	2.69	170	-16.5	.150	1	.04	-59
0.4	.24	167	8.6	2.69	159	-16.5	.150	-1	.07	-79
0.6	.22	160	8.5	2.67	149	-16.4	.152	-2	.10	-92
0.8	.21	154	8.5	2.66	139	-16.3	.154	-2	.13	-99
1.0	.20	148	8.3	2.60	129	-16.1	.156	-3	.16	-109
1.5	.14	136	8.1	2.54	104	-15.6	.166	-4	.22	-124
2.0	.10	136	7.9	2.48	80	-14.8	.181	-6	.25	-139
2.5	.08	161	7.4	2.34	62	-14.3	.193	-5	.28	-147
3.0	.10	178	7.0	2.24	39	-13.7	.206	-11	.31	-157
3.5	.13	176	6.6	2.13	18	-12.6	.233	-18	.34	-167
4.0	.14	163	5.9	1.97	-3	-11.9	.253	-25	.36	-176
4.5	.14	133	5.3	1.83	-23	-11.3	.273	-33	.37	174
5.0	.16	91	4.5	1.69	-343	-10.5	.299	-43	.37	162

MSA-0420 Typical Scattering Parameters (Z $_0$ = 50 Ω , T $_A$ = 25°C, I $_d$ = 90 mA)

A model for this device is available in the DEVICE MODELS section.

Typical Performance, $T_A = 25^{\circ}C$ (unless otherwise noted)

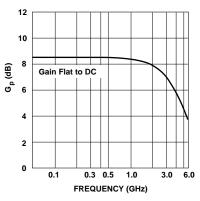


Figure 1. Typical Power Gain vs. Frequency, T_A = 25°C, I_d = 90 mA.

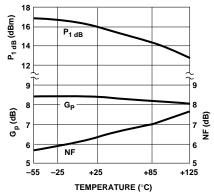


Figure 4. Output Power at 1 dB Gain **Compression, NF and Power Gain vs.** Case Temperature, f = 1.0 GHz, I_d=90mA.

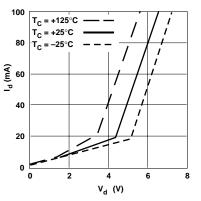


Figure 2. Device Current vs. Voltage.

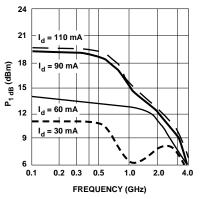


Figure 5. Output Power at 1 dB Gain **Compression vs. Frequency.**

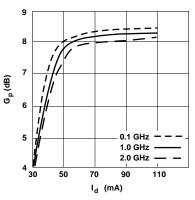


Figure 3. Power Gain vs. Current.

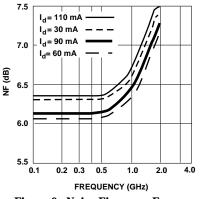
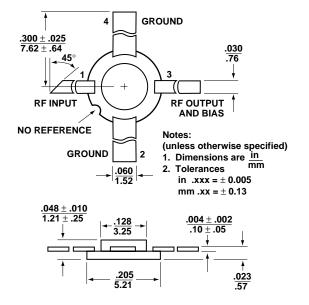



Figure 6. Noise Figure vs. Frequency.

200 mil BeO Package Dimensions