Cascadable Silicon Bipolar MMIC Amplifier

Technical Data

Features

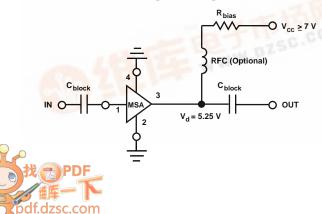
- Cascadable 50 Ω Gain Block
- 3 dB Bandwidth: DC to 4.0 GHz
- 12.5 dBm Typical P_{1 dB} at 1.0 GHz
- 8.5 dB Typical Gain at 1.0 GHz
- Unconditionally Stable (k>1)
- Hermetic Gold-ceramic Microstrip Package

Description

The MSA-0470 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a hermetic, high reliability package. This MMIC is designed for use as a general purpose 50Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in industrial and military applications.

The MSA-series is fabricated using HP's 10 GHz fT, 25 GHz f MAX, silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

MSA-0470


专业PCB打样工

70 mil Package

24小时加急出货

HEWLETT PACKARD

Typical Biasing Configuration

Parameter	Absolute Maximum ^[1]				
Device Current	100 mA				
Power Dissipation ^[2,3]	650 mW				
RF Input Power	+13dBm				
Junction Temperature	200°C				
Storage Temperature	−65 to 200°C				

MSA-0470 Absolute Maximum Ratings

Thermal Resistance ^[2,4] :				
$\theta_{\rm jc} = 115$ °C/W				

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25^{\circ}C.$
- 3. Derate at 8.7 mW/°C for $T_C > 125$ °C.
- 4. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASURE-MENTS section "Thermal Resistance" for more information.

Symbol Parameters and Test Conditions: $I_d = 50 \text{ mA}, Z_0 = 50 \Omega$ Units Min. Max. Typ. PowerGain $(|S_{21}|^2)$ f = 0.1 GHz8.5 9.5 $\mathbf{G}_{\mathbf{P}}$ dB 7.5 ΔG_P Gain Flatness f = 0.1 to 2.5 GHzdB ± 0.6 ± 1.0 3 dB Bandwidth GHz 4.0 $f_{3 dB}$ Input VSWR $\mathrm{f}=0.1\,\mathrm{to}\,2.5\,\mathrm{GHz}$ 1.7:1VSWR Output VSWR f = 0.1 to 2.5 GHz2.0:1NF 50Ω Noise Figure $f = 1.0 \, GHz$ dB 6.5 Output Power at 1 dB Gain Compression f = 1.0 GHz12.5 dBm $P_{1 \, dB}$ IP_3 Third Order Intercept Point $f = 1.0 \, GHz$ dBm 25.5 $t_{\rm D}$ Group Delay f = 1.0 GHzpsec 125Device Voltage 5.25 Vd V 4.755.75dV/dT Device Voltage Temperature Coefficient mV/°C -8.0

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Note:

1. The recommended operating current range for this device is 30 to 70 mA. Typical performance as a function of current is on the following page.

Freq.	S ₁	1		S_{21}		S ₁₂		S ₁₂			\mathbf{S}_{22}	
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang		
0.1	.18	179	8.5	2.67	176	-16.4	.151	1	.10	-14		
0.2	.18	179	8.5	2.67	172	-16.4	.151	2	.10	-30		
0.4	.18	179	8.5	2.67	163	-16.4	.152	3	.13	-50		
0.6	.17	-179	8.5	2.65	155	-16.2	.155	5	.16	-67		
0.8	.16	-176	8.4	2.64	147	-16.1	.158	8	.19	-79		
1.0	.16	-174	8.3	2.61	138	-15.9	.161	6	.22	-90		
1.5	.16	-166	8.2	2.56	117	-15.5	.169	9	.29	-111		
2.0	.21	-163	7.8	2.46	97	-14.6	.186	9	.33	-131		
2.5	.26	-162	7.3	2.33	83	-13.8	.204	12	.36	-142		
3.0	.32	-170	6.5	2.12	65	-13.5	.212	10	.40	-156		
3.5	.37	-177	5.7	1.93	38	-13.2	.220	7	.40	-164		
4.0	.40	175	4.7	1.73	33	-12.6	.234	3	.40	-170		
4.5	.41	166	3.9	1.57	20	-12.4	.239	-1	.39	-173		
5.0	.42	155	3.1	1.44	7	-11.9	.255	-6	.37	-176		

MSA-0470 Typical Scattering Parameters (Z_0 = 50 $\Omega,$ T_A = 25 °C, I_d = 50 mA)

A model for this device is available in the DEVICE MODELS section.

Typical Performance, $T_A = 25^{\circ}C$

(unless otherwise noted)

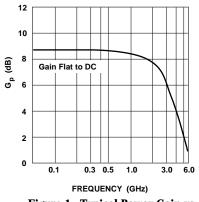


Figure 1. Typical Power Gain vs. Frequency, T_A = 25°C, I_d = 50 mA.

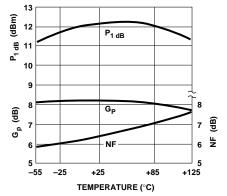
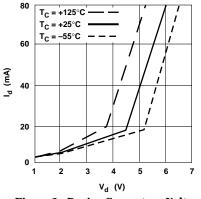



Figure 4. Output Power at 1 dB Gain Compression, NF and Power Gain vs. Case Temperature, f = 1.0 GHz, $I_d=50$ mA.

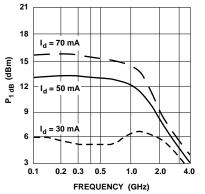


Figure 5. Output Power at 1 dB Gain Compression vs. Frequency.

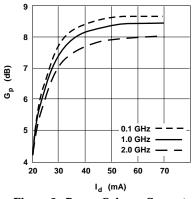


Figure 3. Power Gain vs. Current.

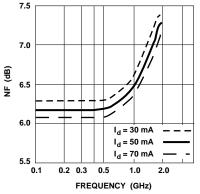
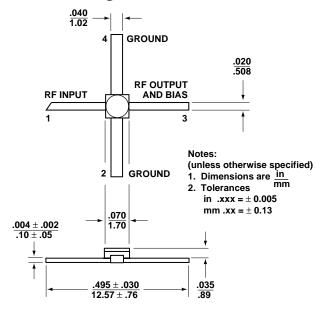



Figure 6. Noise Figure vs. Frequency.

70 mil Package Dimensions