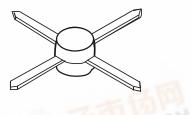
Cascadable Silicon Bipolar MMIC Amplifier

Technical Data

Features

- Cascadable 50 Ω Gain Block
- High Output Power: 18.0 dBm Typical P_{1 dB} at 1.0 GHz
- Low Distortion: 29.0 dBm Typical IP₃ at 1.0 GHz
- 7.0 dB Typical Gain at 1.0 GHz
- Low Cost Plastic Package

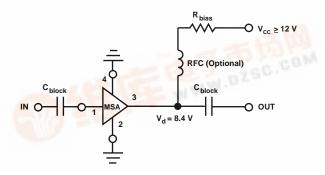
Description


The MSA-0504 is a high performance medium power silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost plastic package. This MMIC is designed for use as a general purpose 50Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in commercial systems.

The MSA-series is fabricated using HP's 10 GHz f_T, 25 GHz f_{MAX}, silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

MSA-0504

专业PCB打样工


04A Plastic Package

24小时加急出货

HEWLETT PACKARD

Typical Biasing Configuration

MSA-0504 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]
Device Current	135 mA
Power Dissipation ^[2,3]	1.5W
RF Input Power	+25 dBm
Junction Temperature	200°C
Storage Temperature	−65 to 150°C

Thermal Resistance^[2,4]: $\theta_{jc} = 75^{\circ}C/W$

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at 13.3 mW/°C for $T_{\rm C}>88^{\circ}{\rm C}.$
- 4. See MEASUREMENTS section "Thermal Resistance" for more information.

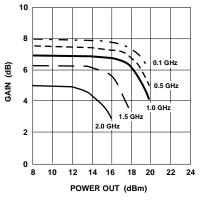
Symbol	Parameters and Test Conditions: I	Units	Min.	Тур.	Max.	
$P_{1 dB}$	Output Power at 1 dB Gain Compression	f = 0.5 GHz	dBm dBm	16.0	19.0	
Gp	Power Gain $(S_{21} ^2)$	f = 1.0 GHz f = 0.5 GHz	dBm dB	16.0	18.0 7.5	
~1		f = 1.0 GHz		6.0	7.0	
ΔG_P	Gain Flatness	f = 0.1 to 1.5 GHz	dB		± 0.75	
f_{3dB}	$3 \mathrm{dB}\mathrm{Bandwidth}^{[2]}$		GHz		2.3	
VSWR	Input VSWR	f = 0.1 to 1.5 GHz			1.6:1	
	Output VSWR	f = 0.1 to 1.5 GHz			2.0:1	
IP_3	Third Order Intercept Point	f = 1.0 GHz	dBm		29.0	
NF	50Ω Noise Figure	f = 1.0 GHz	dB		6.5	
t _D	Group Delay	f = 1.0 GHz	psec		180	
Vd	Device Voltage		V	6.7	8.4	10.1
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-16.0	

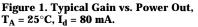
Electrical Specifications^[1], $T_A = 25^{\circ}C$

Notes:

1. The recommended operating current range for this device is 60 to 100 mA. Typical performance as a function of current is on the following page.

2. Referenced from 0.1 GHz Gain (G_P).


Freq.	S ₁₁		S ₂₁		\mathbf{S}_{12}		\mathbf{S}_{22}				
MHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang	k
5	.54	-43	14.7	5.43	160	-18.4	.120	37	.63	-39	0.60
25	.24	-112	9.3	2.92	155	-13.8	.204	12	.24	-101	0.99
50	.18	-142	8.1	2.54	161	-13.7	.206	3	.16	-125	1.17
100	.14	-156	7.8	2.45	166	-13.7	.207	3	.13	-137	1.18
200	.14	-168	7.6	2.40	163	-13.7	.206	1	.13	-146	1.20
400	.14	-174	7.5	2.37	150	-13.7	.206	1	.16	-143	1.19
600	.14	-175	7.4	2.34	137	-13.6	.208	-1	.20	-144	1.18
800	.15	-174	7.2	2.29	124	-13.5	.211	-1	.25	-148	1.15
1000	.17	-174	7.0	2.24	111	-13.6	.209	-3	.29	-154	1.14
1500	.23	-179	6.4	2.09	80	-13.3	.216	-4	.37	-168	1.06
2000	.33	171	5.5	1.88	51	-12.8	.230	-10	.48	178	0.91
2500	.42	156	4.3	1.64	27	-13.0	.224	-12	.51	165	0.90
3000	.49	146	3.2	1.44	6	-12.8	.230	-11	.55	157	0.92


MSA-0504 Typical Scattering Parameters (T_A = 25 °C, I_d = 80 mA)

A model for this device is available in the DEVICE MODELS section.

Typical Performance, $T_A = 25^{\circ}C$

(unless otherwise noted)

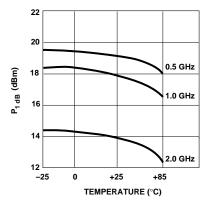


Figure 4. Output Power at 1 dB Gain Compression, vs. Case Temperature, $I_d = 80 \text{ mA}.$

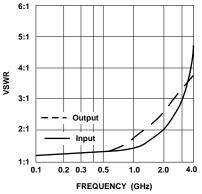
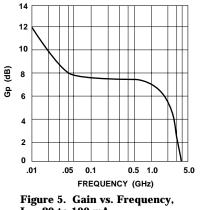



Figure 2. VSWR vs. Frequency, $I_d = 80 \text{ mA}.$

 $I_d = 80$ to 100 mA.

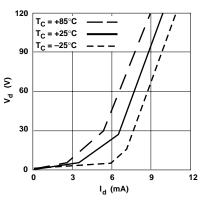


Figure 3. Device Current vs. Voltage.

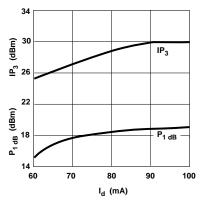
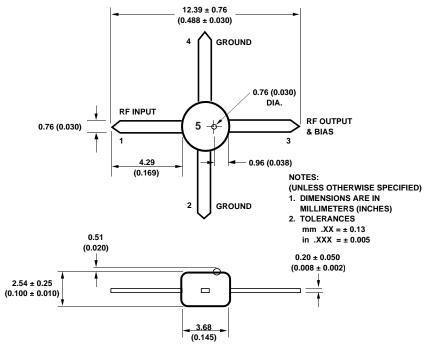



Figure 6. Output Power at 1 dB Gain **Compression**, Third Order Intercept vs. Current, f = 1.0 GHz.

04A Plastic Package Dimensions

DIMENSIONS ARE IN MILLIMETERS (INCHES).