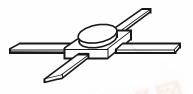
Cascadable Silicon Bipolar MMIC Amplifier

Technical Data

Features

- Broadband, Minimum Ripple Cascadable 50 Ω Gain Block
- 8.0 ± 0.2 dB Typical Gain Flatness from 0.1 to 4.0 GHz
- **3 dB Bandwidth:** 0.1 to 6.0 GHz
- **LowVSWR:** ≤ 1.5:1 from 0.1 to 4.0 GHz
- 11.5 dBm Typical P_{1dB} at 1.0 GHz
- Hermetic Gold-ceramic Microstrip Package

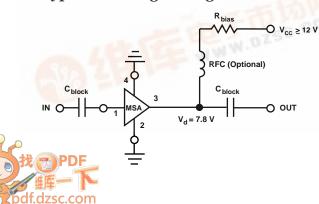
Description


The MSA-0910 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a hermetic, high reliability package. This MMIC is designed for very wide bandwidth industrial and military applications that require flat gain and low VSWR.

The MSA-series is fabricated using HP's 10 GHz f_T , 25 GHz f_{MAX} , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

MSA-0910

专业PCB打样工


100 mil Package

24小时加急出货

HEWLETT

Typical Biasing Configuration

Parameter	Absolute Maximum ^[1]				
Device Current	80 mA				
Power Dissipation ^[2,3]	750 mW				
RF Input Power	+13dBm				
Junction Temperature	200°C				
Storage Temperature	−65 to 200°C				

MSA-0910 Absolute Maximum Ratings

Thermal Resistance ^[2,4] :				
$\theta_{\rm jc} = 145$ °C/W				

8.6

Notes:

1. Permanent damage may occur if any of these limits are exceeded.

- 2. $T_{CASE} = 25^{\circ}C.$
- 3. Derate at 6.9 mW/°C for $T_C > 91$ °C.
- 4. The small spot size of this technique results in a higher, though more accurate determination of θ_{ic} than do alternate methods. See MEASURE-MENTS section "Thermal Resistance" for more information.

Symbol Parameters and Test Conditions: I_d = 35 mA, Z_o = 50 Ω Units Min. Тур. Max. 8.0 G_P Power Gain $(|S_{21}|^2)$ $f = 0.1 \, GHz$ dB 7.0 9.0 $\Delta G_{\rm P}$ Gain Flatness f = 0.1 to 4.0 GHzdB ± 0.2 ± 0.5 3 dB Bandwidth^[2] $f_{3 dB}$ GHz 6.0 Input VSWR f = 1.0 to 4.0 GHz1.3:1VSWR Output VSWR f = 1.0 to 4.0 GHz1.5:1NF 50Ω Noise Figure f = 1.0 GHzdB6.0 $f = 4.0 \, GHz$ 6.5 $P_{1\,dB}$ Output Power at 1 dB Gain Compression f = 1.0 GHzdBm 11.5f = 4.0 GHz6.5 IP_3 Third Order Intercept Point $f = 1.0 \, GHz$ 23.0 dBm Group Delay f = 1.0 GHz100 $t_{\rm D}$ psec Vd Device Voltage V 7.07.8 dV/dT Device Voltage Temperature Coefficient mV/°C -16.0

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Notes:

1. The recommended operating current range for this device is 25 to 45 mA. Typical performance as a function of current is on the following page.

2. Referenced from $0.1 \text{ GHz gain (G_P)}$.

Freq.	S ₁	11		S_{21}		S_{12}			\mathbf{S}_{22}		
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang	k
0.02	.31	-108	10.6	3.38	150	-13.8	.202	16	.31	-107	0.85
0.05	.18	-114	8.8	2.75	160	-13.5	.212	8	.20	-117	1.06
0.1	.12	-141	8.1	2.53	166	-13.4	.214	3	.14	-139	1.16
0.2	.10	-166	7.9	2.47	167	-13.4	.215	1	.13	-157	1.19
0.4	.10	170	7.8	2.46	163	-13.3	.215	-1	.12	-165	1.20
0.6	.10	156	7.8	2.45	157	-13.3	.216	-3	.13	-167	1.20
0.8	.10	145	7.8	2.46	151	-13.3	.216	-4	.13	-168	1.19
1.0	.10	133	7.8	2.46	144	-13.3	.217	-6	.14	-169	1.19
1.5	.10	111	7.9	2.49	127	-13.2	.220	-10	.16	-173	1.17
2.0	.09	88	8.0	2.51	110	-13.0	.224	-13	.18	177	1.15
2.5	.07	89	8.2	2.58	96	-12.8	.230	-16	.21	167	1.11
3.0	.04	90	8.2	2.58	78	-12.8	.230	-21	.20	151	1.11
3.5	.06	145	8.2	2.57	59	-12.7	.233	-27	.19	137	1.11
4.0	.12	152	8.0	2.50	40	-12.7	.230	-33	.16	125	1.12
4.5	.19	142	7.5	2.38	22	-13.0	.223	-40	.13	116	1.16
5.0	.26	131	6.9	2.21	4	-13.5	.211	-47	.09	118	1.22
5.5	.32	120	6.2	2.04	-12	-14.1	.198	-52	.07	160	1.28
6.0	.38	109	5.3	1.84	-27	-14.8	.181	-56	.13	-173	1.38
6.5	.43	99	4.4	1.65	-42	-15.6	.167	-59	.21	-172	1.46

MSA-0910 Typical Scattering Parameters (Z_0 = 50 $\Omega,$ T_A = 25 °C, I_d = 35 mA)

A model for this device is available in the DEVICE MODELS section.

Typical Performance, $T_A = 25^{\circ}C$

(unless otherwise noted)

Figure 1. Typical Power Gain vs. Frequency, $I_d = 35$ mA.

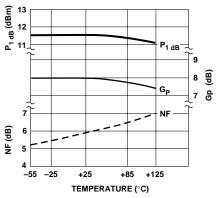


Figure 4. Output Power at 1 dB Gain Compression, Noise Figure and Power

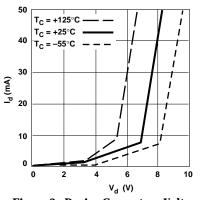


Figure 2. Device Current vs. Voltage.

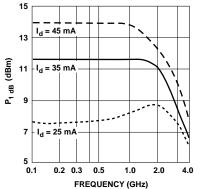
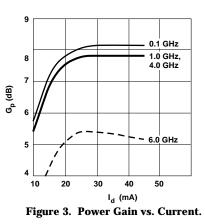



Figure 5. Output Power at 1 dB Gain Compression vs. Frequency.

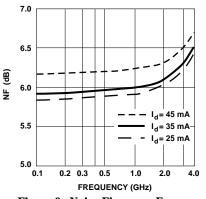
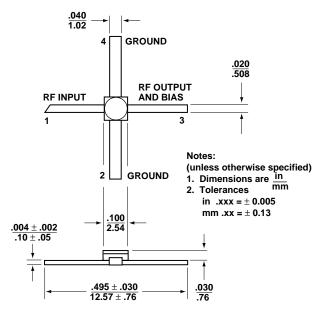



Figure 6. Noise Figure vs. Frequency.

100 mil Package Dimensions Outline 10A

