捷多邦,专业PCB打样工厂,24小时加急出货

Agilent Technologies

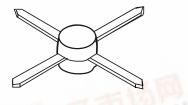
Innovating the HP Way

Cascadable Silicon Bipolar MMIC Amplifier

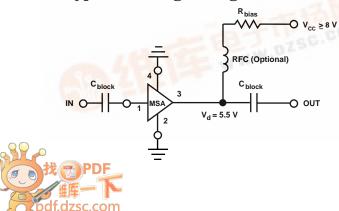
Technical Data

Features

- High Dynamic Range Cascadable 50 Ω or 75 Ω Gain Block
- **3 dB Bandwidth:** 50 MHz to 1.3 GHz
- 17.5 dBm Typical P_{1 dB} at 0.5 GHz
- 12 dB Typical 50 Ω Gain at 0.5 GHz
- 3.6 dB Typical Noise Figure at 0.5 GHz
- Low Cost Plastic Package


Description

The MSA-1104 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost plastic package. This MMIC is designed for high dynamic range in either 50 or 75 Ω systems by combining low noise figure with high IP₃. Typical applications include narrow and broadband linear amplifiers in commercial and industrial systems.


The MSA-series is fabricated using Agilent's 10 GHz f_T , 25 GHz f_{MAX} silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

MSA-1104

04A Plastic Package

Typical Biasing Configuration

MSA-1104 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]
Device Current	80 mA
Power Dissipation ^[2,3]	550 mW
RF Input Power	+1 dBm
Junction Temperature	150°C
Storage Temperature	–65 to 150°C

Thermal Resistance ^[2,4] :						
$\theta_{jc} = 115^{\circ}C/W$						

Notes:

1. Permanent damage may occur if any of these limits are exceeded.

2. $T_{CASE} = 25^{\circ}C.$

3. Derate at 8.7 mW/°C for $T_C > 87^\circ C.$

4. See MEASUREMENTS section "Thermal Resistance" for more information.

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions:	Units	Min.	Тур.	Max.	
Gp	Power Gain (S ₂₁ ²)	f = 0.05 GHz f = 0.5 GHz f = 1.0 GHz	dB dB dB	10.0	12.7 12.0 10.5	
ΔGp	Gain Flatness	f = 0.1 to 1.0 GHz	dB		±1.0	
f3 dB	3 dB Bandwidth ^[2]		GHz		1.3	
VCWD	Input VSWR	f = 0.1 to 1.0 GHz			1.5:1	
VSWR	Output VSWR	f = 0.1 to 1.0 GHz			1.7:1	
NF	50 Ω Noise Figure	f = 0.5 GHz	dB		3.6	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 0.5 GHz	dBm		17.5	
IP ₃	Third Order Intercept Point	f = 0.5 GHz	dBm		30	
tD	Group Delay	f = 0.5 GHz	psec		200	
Vd	Device Voltage		V	4.4	5.5	6.6
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Notes:

1. The recommended operating current range for this device is 40 to 70 mA. Typical performance as a function of current is on the following page.

2. Referenced from 50 MHz gain (G_P).

Freq.	S ₁	1		S ₂₁		S ₁₂					
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang	k
.0005	.76	-22	19.3	9.19	167	-24.4	.060	54	.77	-22	0.48
.005	.20	-79	13.7	4.83	164	-16.5	.149	12	.21	-83	0.96
.025	.05	-78	12.8	4.35	174	-16.2	.154	2	.06	-101	1.07
.050	.04	-75	12.7	4.31	174	-16.4	.151	2	.05	-136	1.09
.100	.04	-81	12.6	4.29	171	-16.4	.152	2	.05	-137	1.09
.200	.04	-93	12.6	4.24	164	-16.3	.153	3	.07	-135	1.09
.300	.06	-105	12.4	4.18	156	-16.2	.155	4	.10	-136	1.08
.400	.07	-115	12.3	4.11	148	-16.0	.158	5	.12	-139	1.0
.500	.09	-124	12.1	4.01	141	-15.8	.162	6	.15	-144	1.00
.600	.11	-132	11.8	3.91	134	-15.6	.166	7	.17	-150	1.0
.700	.13	-140	11.6	3.80	126	-15.4	.170	7	.19	-156	1.05
.800	.15	-147	11.3	3.68	120	-15.2	.174	7	.22	-161	1.04
.900	.16	-154	11.0	3.56	113	-14.9	.180	7	.24	-168	1.03
1.000	.18	-161	10.7	3.43	106	-14.7	.184	6	.26	-173	1.03
1.500	.28	171	9.1	2.85	77	-13.5	.211	2	.35	163	0.99
2.000	.37	149	7.6	2.39	52	-13.0	.224	-5	.43	140	0.99
2.500	.45	133	6.1	2.02	33	-12.7	.231	-10	.47	125	1.02
3.000	.52	118	4.6	1.69	14	-12.6	.234	-16	.50	112	1.05

MSA-1104 Typical Scattering Parameters (Z₀ = 50 Ω , T_A = 25°C, I_d = 60 mA)

A model for this device is available in the DEVICE MODELS section.

Typical Performance, $T_A = 25^{\circ}C$, $Z_O = 50 \Omega$

(unless otherwise noted)

Figure 1. Typical Power Gain vs. Frequency, $I_d = 60 \text{ mA}$.

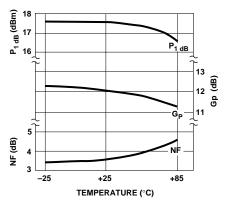


Figure 4. Output Power at 1 dB Gain Compression, Noise Figure and Power Gain vs. Case Temperature, f = 0.5 GHz. L = 60 mA.

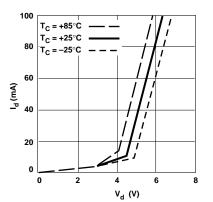
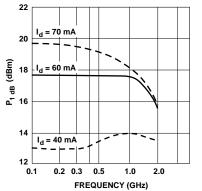
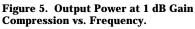
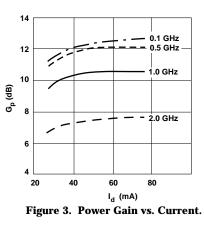





Figure 2. Device Current vs. Voltage.

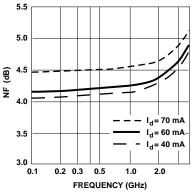
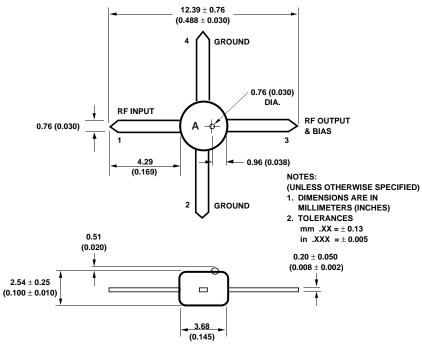



Figure 6. Noise Figure vs. Frequency.

Agilent Technologies

Innovating the HP Way

04A Plastic Package Dimensions

DIMENSIONS ARE IN MILLIMETERS (INCHES).

www.semiconductor.agilent.com Data subject to change. Copyright © 1999 Agilent Technologies 5965-9556E (11/99)