# Cascadable Silicon Bipolar MMIC Amplifier

# Technical Data

#### Features

- Cascadable 50  $\Omega$  Gain Block
- Low Operating Voltage: 3.5 V Typical V<sub>d</sub>
- 3 dB Bandwidth: DC to 0.8 GHz
- High Gain: 18.5 dB Typical at 0.5 GHz
- Low Noise Figure: 3.0 dB Typical at 0.5 GHz
- Surface Mount Plastic Package
- Tape-and-Reel Packaging Available<sup>[1]</sup>

#### Note:

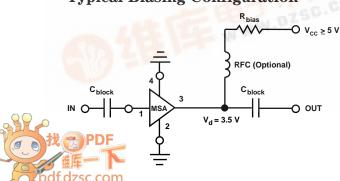
1. Refer to PACKAGING section "Tapeand-Reel Packaging for Surface Mount Semiconductors".

#### **Description**

The MSA-0686 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost, surface mount plastic package. This MMIC is designed for use as a general purpose  $50 \Omega$  gain block. Applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications.

The MSA-series is fabricated using HP's 10 GHz f<sub>T</sub>, 25 GHz f<sub>MAX</sub>, silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

#### **MSA-0686**


专业PCB打样工

24小时加急出货

#### 86 Plastic Package







| MSA-0686 Absolute | Maximum Ratings |
|-------------------|-----------------|
|-------------------|-----------------|

|                                    | 0                               |  |  |  |  |
|------------------------------------|---------------------------------|--|--|--|--|
| Parameter                          | Absolute Maximum <sup>[1]</sup> |  |  |  |  |
| Device Current                     | 50 mA                           |  |  |  |  |
| Power Dissipation <sup>[2,3]</sup> | 200 mW                          |  |  |  |  |
| RF Input Power                     | +13dBm                          |  |  |  |  |
| Junction Temperature               | 150°C                           |  |  |  |  |
| Storage Temperature                | −65 to 150°C                    |  |  |  |  |
| NT 4                               |                                 |  |  |  |  |

Thermal Resistance<sup>[2,4]</sup>:  $\theta_{jc} = 120^{\circ}C/W$ 

#### Notes:

1. Permanent damage may occur if any of these limits are exceeded.

- 2.  $T_{CASE} = 25^{\circ}C.$
- 3. Derate at 8.3 mW/°C for  $T_C > 126$ °C.

4. See MEASUREMENTS section "Thermal Resistance" for more information.

### Electrical Specifications<sup>[1]</sup>, $T_A = 25^{\circ}C$

| Symbol            | Parameters and Test Conditions:        | Units                  | Min.  | Тур. | Max.      |     |
|-------------------|----------------------------------------|------------------------|-------|------|-----------|-----|
| GP                | Power Gain $( S_{21} ^2)$              | f = 0.1  GHz           | dB    |      | 20.0      |     |
|                   |                                        | $f = 0.5 \mathrm{GHz}$ |       | 16.5 | 18.5      |     |
| $\Delta G_P$      | Gain Flatness                          | f = 0.1  to  0.5  GHz  | dB    |      | $\pm 0.7$ |     |
| $f_{3 dB}$        | 3 dB Bandwidth                         |                        | GHz   |      | 0.8       |     |
| VSWR              | Input VSWR                             | f = 0.1 to $1.5$ GHz   |       |      | 1.7:1     |     |
| 10111             | Output VSWR                            | f = 0.1 to $1.5$ GHz   |       |      | 1.7:1     |     |
| NF                | $50 \Omega$ Noise Figure               | f = 0.5 GHz            | dB    |      | 3.0       |     |
| P <sub>1 dB</sub> | Output Power at 1 dB Gain Compression  | $f = 0.5 \mathrm{GHz}$ | dBm   |      | 2.0       |     |
| IP <sub>3</sub>   | Third Order Intercept Point            | f = 0.5  GHz           | dBm   |      | 14.5      |     |
| t <sub>D</sub>    | Group Delay                            | $f = 0.5 \mathrm{GHz}$ | psec  |      | 225       |     |
| Vd                | Device Voltage                         |                        | V     | 2.8  | 3.5       | 4.2 |
| dV/dT             | Device Voltage Temperature Coefficient |                        | mV/°C |      | -8.0      |     |

Notes:

1. The recommended operating current range for this device is 12 to 20 mA. Typical performance as a function of current is on the following page.

#### **Part Number Ordering Information**

| Part Number  | No. of Devices | Container      |
|--------------|----------------|----------------|
| MSA-0686-TR1 | 1000           | 7" Reel        |
| MSA-0686-BLK | 100            | Antistatic Bag |

For more information, see "Tape and Reel Packaging for Semiconductor Devices".

| Freq. | S <sub>11</sub> |      | $\mathbf{S}_{21}$ |       |     | S <sub>12</sub> |      |     | S <sub>22</sub> |      |      |
|-------|-----------------|------|-------------------|-------|-----|-----------------|------|-----|-----------------|------|------|
| GHz   | Mag             | Ang  | dB                | Mag   | Ang | dB              | Mag  | Ang | Mag             | Ang  | k    |
| 0.1   | .06             | -175 | 20.1              | 10.08 | 170 | -23.3           | .069 | 4   | .04             | -84  | 1.05 |
| 0.2   | .06             | -169 | 19.8              | 9.77  | 161 | -23.2           | .069 | 8   | .07             | -103 | 1.05 |
| 0.3   | .07             | -164 | 19.4              | 9.35  | 152 | -22.5           | .075 | 13  | .10             | -113 | 1.03 |
| 0.4   | .08             | -158 | 19.1              | 8.98  | 144 | -22.2           | .078 | 16  | .13             | -123 | 1.02 |
| 0.5   | .08             | -154 | 18.7              | 8.58  | 135 | -21.6           | .083 | 18  | .15             | -131 | 1.01 |
| 0.6   | .09             | -152 | 18.0              | 7.94  | 128 | -21.1           | .088 | 21  | .18             | -140 | 1.01 |
| 0.8   | .12             | -152 | 17.2              | 7.25  | 114 | -20.3           | .097 | 25  | .21             | -155 | 1.00 |
| 1.0   | .15             | -154 | 16.3              | 6.51  | 102 | -19.5           | .106 | 25  | .24             | -168 | 0.99 |
| 1.5   | .25             | -171 | 14.0              | 5.01  | 76  | -17.6           | .133 | 22  | .27             | 165  | 0.99 |
| 2.0   | .34             | 171  | 11.9              | 3.94  | 56  | -16.1           | .157 | 19  | .27             | 147  | 1.01 |
| 2.5   | .43             | 155  | 9.8               | 3.09  | 42  | -15.9           | .161 | 16  | .27             | 134  | 1.06 |
| 3.0   | .49             | 140  | 8.0               | 2.51  | 28  | -15.3           | .171 | 11  | .26             | 124  | 1.10 |
| 3.5   | .56             | 128  | 6.4               | 2.09  | 15  | -15.1           | .175 | 6   | .25             | 118  | 1.13 |
| 4.0   | .61             | 118  | 5.0               | 1.78  | 3   | -14.9           | .180 | 3   | .24             | 115  | 1.15 |
| 5.0   | .70             | 99   | 2.4               | 1.32  | -18 | -14.7           | .185 | -2  | .24             | 118  | 1.16 |

MSA-0686 Typical Scattering Parameters (Z\_0 = 50  $\Omega,$  T\_A = 25 °C, I\_d = 16 mA)

Note:

1. A model for this device is available in the DEVICE MODELS section.

### Typical Performance, $T_A = 25^{\circ}C$

(unless otherwise noted)

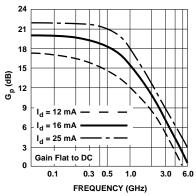
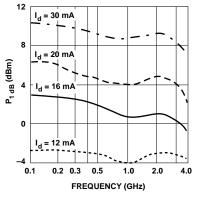




Figure 1. Typical Power Gain vs. Frequency,  $T_A = 25^{\circ}C$ .



**Figure 4. Output Power at 1 dB Gain Compression vs. Frequency.** 

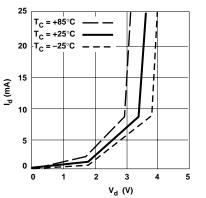
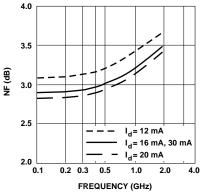
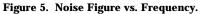





Figure 2. Device Current vs. Voltage.





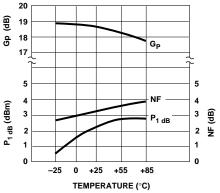
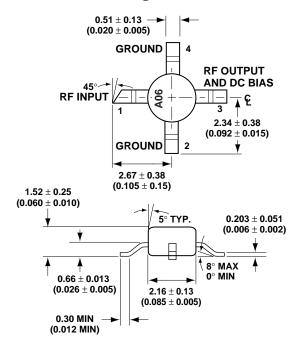




Figure 3. Output Power at 1 dB Gain Compression, NF and Power Gain vs. Case Temperature, f = 1.0 GHz,  $I_d=16mA$ .

## **86 Plastic Package Dimensions**



DIMENSIONS ARE IN MILLIMETERS (INCHES)