捷多邦,专业PCB打样工厂,24小时加急出货

Agilent Technologies

Innovating the HP Way

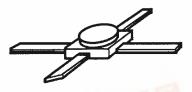
Cascadable Silicon Bipolar MMIC Amplifier

Technical Data

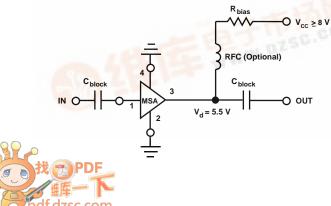
Features

- High Dynamic Range Cascadable 50 Ω or 75 Ω Gain Block
- **3 dB Bandwidth:** 50 MHz to 1.6 GHz
- 17.5 dBm Typical P_{1 dB} at 0.5 GHz
- 12 dB Typical 50 Ω Gain at 0.5 GHz
- 3.5 dB Typical Noise Figure at 0.5 GHz
- Hermetic Gold-ceramic Microstrip Package

Description


The MSA-1110 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit

(MMIC) housed in a hermetic high reliability package. This MMIC is designed for high dynamic range in either 50 or 75 Ω systems by combining low noise figure with high IP₃. Typical applications include narrow and broadband linear amplifiers in industrial and military systems.


The MSA-series is fabricated using Agilent's 10 GHz f_T , 25 GHz f_{MAX} silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

MSA-1110

100 mil Package

Typical Biasing Configuration

MSA-1110 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]				
Device Current	90 mA				
Power Dissipation ^[2,3]	560 mW				
RF Input Power	+13 dBm				
Junction Temperature	200°C				
Storage Temperature	-65 to 200°C				

Thermal Resistance^[2,4]: $\theta_{jc} = 135^{\circ}C/W$

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25^{\circ}C.$
- 3. Derate at 7.4 mW/°C for $T_C > 124^\circ C.$
- 4. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASURE-MENTS section "Thermal Resistance" for more information.

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions:	Units	Min.	Тур.	Max.	
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz	dB	11.5	12.5	13.5
ΔG_P	Gain Flatness	f = 0.1 to 1.0 GHz	dB		±0.7	±1.0
f _{3 dB}	3 dB Bandwidth ^[2]		GHz		1.6	
VCWD	Input VSWR	f = 0.1 to 1.0 GHz			1.7:1	
VSWR	Output VSWR	f = 0.1 to 1.0 GHz			1.9:1	
NF	50 Ω Noise Figure	f = 0.5 GHz	dB		3.5	4.5
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 0.5 GHz	dBm	16.0	17.5	
IP ₃	Third Order Intercept Point	f = 0.5 GHz	dBm		30.0	
tD	Group Delay	f = 0.5 GHz	psec		160	
Vd	Device Voltage		V	4.5	5.5	6.5
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Notes:

1. The recommended operating current range for this device is 40 to 75 mA. Typical performance as a function of current is on the following page.

2. Referenced from 50 MHz gain (G_P).

Freq. GHz	S ₁₁		S ₂₁			S ₁₂			S ₂₂		
	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang	k
.0005	.83	-7	19.5	9.44	176	-31.9	.025	39	.84	-7	0.77
.005	.54	-50	16.8	6.92	158	-18.7	.116	34	.55	-50	0.60
.025	.15	-78	13.0	4.47	167	-16.6	.148	9	.15	-79	1.03
.050	.10	-64	12.6	4.26	171	-16.5	.149	5	.10	-67	1.08
.100	.08	-63	12.5	4.23	171	-16.5	.150	4	.08	-66	1.09
.200	.09	-74	12.4	4.17	166	-16.4	.152	4	.09	-78	1.09
.300	.11	-85	12.3	4.10	160	-16.2	.154	5	.12	-89	1.07
.400	.13	-94	12.3	4.10	154	-16.1	.157	6	.15	-98	1.05
.500	.16	-102	12.1	4.04	148	-15.9	.161	7	.18	-106	1.02
.600	.18	-108	12.0	3.98	143	-15.6	.165	8	.20	-113	1.00
.700	.21	-114	11.8	3.89	137	-15.4	.169	8	.23	-120	0.97
.800	.23	-120	11.6	3.80	131	-15.2	.173	8	.25	-126	0.95
.900	.25	-126	11.4	3.71	126	-15.0	.178	8	.28	-132	0.92
1.000	.27	-131	11.1	3.60	120	-14.8	.182	8	.30	-137	0.91
1.500	.36	-153	9.8	3.10	96	-13.8	.203	4	.37	-160	0.83
2.000	.42	-171	8.4	2.64	74	-13.3	.217	1	.40	-178	0.82
2.500	.47	177	7.2	2.29	59	-12.5	.236	-2	.41	172	0.80
3.000	.47	159	5.9	1.97	43	-13.2	.220	-10	.38	157	0.95

MSA-1110 Typical Scattering Parameters ($Z_0 = 50 \Omega$, $T_A = 25^{\circ}C$, $I_d = 60 mA$)

A model for this device is available in the DEVICE MODELS section.

Typical Performance, T_A = 25°C, Z₀ = 50 Ω

(unless otherwise noted)

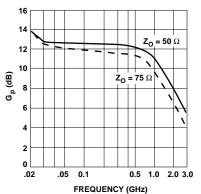


Figure 1. Typical Power Gain vs. Frequency, I_d = 60 mA.

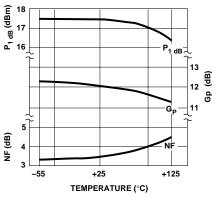


Figure 4. Output Power at 1 dB Gain Compression, Noise Figure and Power Gain vs. Case Temperature, f = 0.5 GHz, $I_d = 60$ mA.

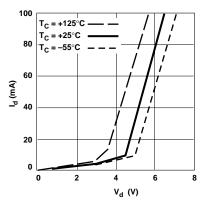


Figure 2. Device Current vs. Voltage.

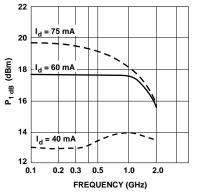
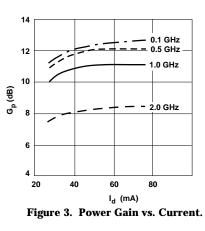



Figure 5. Output Power at 1 dB Gain Compression vs. Frequency.

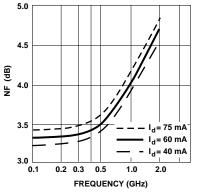
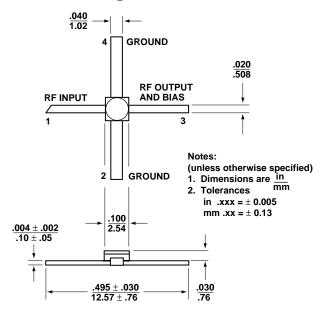



Figure 6. Noise Figure vs. Frequency.

Agilent Technologies

Innovating the HP Way

100 mil Package Dimensions

www.semiconductor.agilent.com Data subject to change. Copyright © 1999 Agilent Technologies 5965-9558E (11/99)