

Precision Analog-to-Digital Converter (ADC) with 8051 Microcontroller and Flash Memory

FEATURES

ANALOG FEATURES

- 24 Bits No Missing Codes
- 22 Bits Effective Resolution at 10Hz
 - Low Noise: 75nV
- PGA From 1 to 128
- Precision On-Chip Voltage Reference
 - Accuracy: 0.2%
 - Drift: 5ppm/°C
- 8 Differential/Single-Ended Channels
- On-Chip Offset/Gain Calibration
- Offset Drift: 0.02ppm/°C
- Gain Drift: 0.5ppm/°C
- On-Chip Temperature Sensor
- Burnout Sensor Detection
- Single-Cycle Conversion
- Selectable Buffer Input

DIGITAL FEATURES

Microcontroller Core

- 8051-Compatible
- High-Speed Core
 - 4 Clocks per Instruction Cycle
- DC to 33MHz
- Single Instruction 121ns
- Dual Data Pointer

Memory

- Up To 32kB Flash Memory
- Flash Memory Partitioning
- Endurance 1M Erase/Write Cycles, 100 Year Data Retention
- In-System Serially Programmable
- External Program/Data Memory (64kB)
- 1,280 Bytes Data SRAM
- Flash Memory Security
- 2kB Boot ROM
- Programmable Wait State Control

Peripheral Features

- 34 I/O Pins
- Additional 32-Bit Accumulator
- Three 16-Bit Timer/Counters
- System Timers
- Programmable Watchdog Timer
- Full-Duplex Dual USARTs
- Master/Slave SPI™
- 16-Bit PWM
- Power Management Control
- Idle Mode Current < 1mA
- Stop Mode Current < 1μA
- Programmable Brownout Reset
- Programmable Low Voltage Detect
- 21 Interrupt Sources
- Two Hardware Breakpoints

GENERAL FEATURES

- Pin-Compatible with MSC1211/12/13/14
- Package: TQFP-64
- Low Power: 4mW
- Industrial Temperature Range:
 - -40°C to +85°C
- Power Supply: 2.7V to 5.25V

APPLICATIONS

- Industrial Process Control
- Instrumentation
- Liquid/Gas Chromatography
- Blood Analysis
- Smart Transmitters
- Portable Instruments
- Weigh Scales
- Pressure Transducers
- Intelligent Sensors
- Portable Applications
- DAS Systems

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

PACKAGE/ORDERING INFORMATION(1)

PRODUCT	FLASH MEMORY	PACKAGE-LEAD	PACKAGE DESIGNATOR	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING
MSC1210Y2	4k	TQFP-64	PAG	-40°C to +85°C	MSC1210Y2
MSC1210Y3	8k	TQFP-64	PAG	-40°C to +85°C	MSC1210Y3
MSC1210Y4	16k	TQFP-64	PAG	-40°C to +85°C	MSC1210Y4
MSC1210Y5	32k	TQFP-64	PAG	-40°C to +85°C	MSC1210Y5

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this datasheet, or refer to our web site at www.ti.com.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ABSOLUTE MAXIMUM RATINGS(1)

			MSC1210Yx	UNITS
Analog Inputs				
	Momentary		100	mA
Input current	Continuous		10	mA
Input voltage			AGND – 0.3 to AV _{DD} + 0.3	V
Power Supply				
DV _{DD} to DGND			-0.3 to +6	V
AV _{DD} to AGND			-0.3 to +6	V
AGND to DGND			-0.3 to +0.3	V
VREF to AGND			-0.3 to AV _{DD} + 0.3	V
Digital input voltage to D	GND		-0.3 to DV _{DD} + 0.3	V
Digital output voltage to	DGND		-0.3 to DV _{DD} + 0.3	V
Maximum junction tempor	erature		150	°C
Operating temperature r	ange		-40 to +85	°C
Storage temperature rar	nge		-65 to +150	°C
Lead temperature (solde	ering, 10s)		+235	°C
Package power dissipate	ion		(T _J Max – T _{AMBIENT})/θ _J A	W
Output current, all pins			200	mA
Output pin short-circuit			10	S
	1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	High K (2s 2p)	62.9	°C/W
Thermal Resistance	Junction to ambient (θ_{JA})	Low K (1s)	78.2	°C/W
Junction to case (θ_{JC})		•	13.8	°C/W
Digital Outputs				
Output current	Continuous		100	mA
I/O source/sink current			100	mA
Power pin maximum			300	mA

⁽¹⁾ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.

MSC1210YX FAMILY FEATURES

FEATURES ⁽¹⁾	MSC1210Y2 ⁽²⁾	MSC1210Y3 ⁽²⁾	MSC1210Y4 ⁽²⁾	MSC1210Y5 ⁽²⁾
Flash Program Memory (Bytes)	Up to 4k	Up to 8k	Up to 16k	Up to 32k
Flash Data Memory (Bytes)	Up to 4k	Up to 8k	Up to 16k	Up to 32k
Internal Scratchpad RAM (Bytes)	256	256	256	256
Internal MOVX RAM (Bytes)	1024	1024	1024	1024
Externally Accessible Memory (Bytes)	64k Program, 64k Data			

⁽¹⁾ All peripheral features are the same on all devices; the flash memory size is the only difference.

⁽²⁾ The last digit of the part number (N) represents the onboard flash size = (2^N) kBytes.

ELECTRICAL CHARACTERISTICS: $AV_{DD} = 5V$ All specifications from T_{MIN} to T_{MAX} , $DV_{DD} = +2.7V$ to 5.25V, $f_{MOD} = 15.625$ kHz, PGA = 1, Buffer ON, $f_{DATA} = 10$ Hz, Bipolar, and $V_{REF} = (REF IN+) - (REF IN-) = +2.5V$, unless otherwise noted.

				MSC1210Yx		
PA	ARAMETER	CONDITIONS	MIN TYP MAX			UNITS
Analog Input (A	IN0-AIN7, AINCOM)		•	•		
		Buffer OFF	AGND - 0.1		AV _{DD} + 0.1	V
Analog Input Ran	ige	Buffer ON	AGND + 50mV		AV _{DD} – 1.5	V
Full-Scale Input \	/oltage Range	(ln+) - (ln-)			±V _{REF} /PGA	V
Differential Input	Impedance	Buffer OFF		7/PGA ⁽⁵⁾		ΜΩ
Input Current		Buffer ON		0.5		nA
	Fast Settling Filter	-3dB		0.469 • f _{DATA}		
Bandwidth	Sinc ² Filter	-3dB		0.318 • f _{DATA}		
	Sinc ³ Filter	-3dB		0.262 • f _{DATA}		
Programmable G	ain Amplifier	User-Selectable Gain Range	1		128	
Input Capacitanc	е	Buffer On		9		pF
Input Leakage Cu	urrent	Modulator OFF, T = +25°C		0.5		pA
Burnout Current	Sources	Buffer On		±2		μΑ
Offset DAC			1	•		1.
Offset DAC Rang	je			±V _{REF} /(2•PGA)		V
Offset DAC Mond	otonicity		8			Bits
Offset DAC Gain	Error			±1.5		% of Range
Offset DAC Gain	Error Drift			1		ppm/°C
System Perform	ance	'	•			1
Resolution			24			Bits
ENOB		See Typical Characteristics		22		Bits
Output Noise				See Typical Ch	naracteristics	•
No Missing Code	S	Sinc ³ Filter, Decimation > 360	24			Bits
Integral Nonlinea	rity	End Point Fit, Differential Input			±0.0015	% of FSR
Offset Error		After Calibration		7.5		ppm of FS
Offset Drift(1)		Before Calibration		0.02		ppm of FS/°C
Gain Error ⁽²⁾		After Calibration		0.002		%
Gain Error Drift(1)	Before Calibration		0.5		ppm/°C
System Gain Cal	ibration Range		80		120	% of FS
System Offset Ca	alibration Range		-50		50	% of FS
		At DC	100	115		dB
		f _{CM} = 60Hz _, f _{DATA} = 10Hz		130		dB
ADC Common-M	oae Rejection	f _{CM} = 50Hz _, f _{DATA} = 50Hz		120		dB
		f _{CM} = 60Hz, f _{DATA} = 60Hz		120		dB
		f _{SIG} = 50Hz, f _{DATA} = 50Hz		100		dB
Normal-Mode Re	jection	f _{SIG} = 60Hz, f _{DATA} = 60Hz		100		dB
Power-Supply Re	ejection	At DC, dB = $-20\log(\Delta V_{OUT}/\Delta V_{DD})^{(3)}$	80	88		dB

⁽¹⁾ Calibration can minimize these errors.

⁽²⁾ The gain calibration cannot have a REF IN+ of more than AVDD -1.5V with Buffer ON. To calibrate gain, turn Buffer OFF.

 ⁽³⁾ ΔV_{OUT} is change in digital result.
 (4) 9pF switched capacitor at f_{SAMP} clock frequency (see Figure 13).
 (5) The input impedance for PGA = 128 is the same as that for PGA = 64 (that is, 7MΩ/64).

ELECTRICAL CHARACTERISTICS: AV_{DD} = 5V (continued)

All specifications from T_{MIN} to T_{MAX}, DV_{DD} = +2.7V to 5.25V, f_{MOD} = 15.625kHz, PGA = 1, Buffer ON, f_{DATA} = 10Hz, Bipolar, and V_{REF} = (REF IN+) – (REF IN-) = +2.5V, unless otherwise noted.

				MSC1210Yx		
P/	ARAMETER	CONDITIONS	MIN TYP MAX		MAX	UNITS
Voltage Referen	ce Input		•	•	•	'
Reference Input Range		REF IN+, REF IN-	AGND		AV _{DD} ⁽²⁾	V
VREF		V _{REF} = (REF IN+) – (REF IN–)	0.1	2.5	AV_{DD}	V
., .	4 L D 1 . C	At DC		130		dB
V _{REF} Common-N	Mode Rejection	f _{CM} = 60Hz, f _{DATA} = 60Hz		120		dB
Input Current(4)		V _{REF} = 2.5V		3		μΑ
On-Chip Voltage	e Reference					•
		VREFH = 1 at +25°C, ACLK = 1MHz	2.495	2.5	2.505	V
Output Voltage		VREFH = 0 at +25°C, ACLK = 1MHz		1.25		V
Power-Supply Re	ejection Ratio			65		dB
Short-Circuit Cur	rent Source			8		mA
Short-Circuit Cur	rent Sink			50		μА
Short-Circuit Dur	ation	Sink or Source		Indefinite		
Drift				5		ppm/°C
Output Impedance	e	Sourcing 100μA		3		Ω
Startup Time from	n Power On	C _{REF} = 0.1μF		8		ms
Temperature Ser	nsor Voltage	T = +25°C		115		mV
Temperature Ser	nsor Coefficient			375		μV/°C
Analog Power-Si	upply Requirements		•	•	•	J.
Analog Power-Su	ipply Voltage	AV _{DD}	4.75	5.0	5.25	V
	Analog Current (I _{ADC} + I _{VREF})	PDADC = 1, ALVDIS = 1, DAB = 1		< 1		nA
Analog Power-Supply Current		PGA = 1, Buffer OFF		200		μА
	ADC Current	PGA = 128, Buffer OFF		500		μА
	(I _{ADC})	PGA = 1, Buffer ON		240		μА
		PGA = 128, Buffer ON		850		μА
	V _{REF} Supply Current (I _{VREF})	ADC ON, V _{DAC} OFF		250		μΑ

⁽¹⁾ Calibration can minimize these errors.

⁽²⁾ The gain calibration cannot have a REF IN+ of more than AVDD -1.5V with Buffer ON. To calibrate gain, turn Buffer OFF.

 ⁽³⁾ ΔV_{OUT} is change in digital result.
 (4) 9pF switched capacitor at f_{SAMP} clock frequency (see Figure 13).
 (5) The input impedance for PGA = 128 is the same as that for PGA = 64 (that is, 7MΩ/64).

ELECTRICAL CHARACTERISTICS: $AV_{DD} = 3V$ All specifications from T_{MIN} to T_{MAX} , $DV_{DD} = +2.7V$ to 5.25V, $f_{MOD} = 15.625$ kHz, PGA = 1, Buffer ON, $f_{DATA} = 10$ Hz, Bipolar, and $V_{REF} = (REF IN+) - (REF IN-) = +1.25V$, unless otherwise noted.

				MSC1210Yx		
PA	RAMETER	CONDITIONS	MIN TYP		MAX	UNITS
ANALOG INPUT	(AIN0-AIN7, AINCOM)	'	-			
		Buffer OFF	AGND - 0.1		AV _{DD} + 0.1	V
Analog Input Rang	ge	Buffer ON	AGND + 50mV		AV _{DD} – 1.5	V
Full-Scale Input V	oltage Range	(ln+) – (ln–)			±V _{REF} /PGA	V
Differential Input I	mpedance	Buffer OFF		7/PGA ⁽⁵⁾		ΜΩ
Input Current		Buffer ON		0.5		nA
	Fast Settling Filter	-3dB		0.469 • f _{DATA}		
Bandwidth	Sinc ² Filter	-3dB		0.318 • f _{DATA}		
	Sinc ³ Filter	-3dB		0.262 • f _{DATA}		
Programmable Ga	ain Amplifier	User-Selectable Gain Range	1		128	
Input Capacitance	•			9		pF
Input Leakage Cu	rrent	Modulator OFF, T = +25°C		0.5		pA
Burnout Current S	Sources	Sensor Input Open Circuit		±2		μА
OFFSET DAC		•	•			•
Offset DAC Range	е			±V _{REF} /(2•PGA)		V
Offset DAC Mono	tonicity		8			Bits
Offset DAC Gain	Error			±1.5		% of Range
Offset DAC Gain	Error Drift			1		ppm/°C
SYSTEM PERFO	RMANCE		1			1
Resolution			24			Bits
ENOB				22		Bits
Output Noise				See Typical Ch	naracteristics	•
No Missing Codes	3	Sinc ³ Filter	24			Bits
Integral Nonlinear	ity	End Point Fit, Differential Input			±0.0015	% of FSR
Offset Error		After Calibration		7.5		ppm of FS
Offset Drift(1)		Before Calibration		0.02		ppm of FS/°C
Gain Error ⁽²⁾		After Calibration		0.005		%
Gain Error Drift(1)		Before Calibration		1.0		ppm/°C
System Gain Calil	bration Range		80		120	% of FS
System Offset Ca	libration Range		-50		50	% of FS
		At DC	100	115		dB
ADC Common-Mode Rejection		f _{CM} = 60Hz _, f _{DATA} = 10Hz		130		dB
		f _{CM} = 50Hz, f _{DATA} = 50Hz		120		dB
		f _{CM} = 60Hz, f _{DATA} = 60Hz		120		dB
		f _{SIG} = 50Hz, f _{DATA} = 50Hz		100		dB
Normal-Mode Rej	ection	f _{SIG} = 60Hz, f _{DATA} = 60Hz		100		dB
Power-Supply Re	jection	At DC, dB = $-20\log(\Delta VOUT/\Delta V_{DD})^{(3)}$		85		dB

⁽¹⁾ Calibration can minimize these errors.

 $^{^{(2)}}$ The gain calibration cannot have a REF IN+ of more than AV_{DD} -1.5V with Buffer ON. To calibrate gain, turn Buffer OFF.

ΔV_{OUT} is change in digital result.
 9pF switched capacitor at f_{SAMP} clock frequency (see Figure 13).
 The input impedance for PGA = 128 is the same as that for PGA = 64 (that is, 7MΩ/64).

ELECTRICAL CHARACTERISTICS: $AV_{DD} = 3V$ (continued)
All specifications from T_{MIN} to T_{MAX} , $DV_{DD} = +2.7V$ to 5.25V, $f_{MOD} = 15.625$ kHz, PGA = 1, Buffer ON, $f_{DATA} = 10$ Hz, Bipolar, and $V_{REF} = (REF IN+) - (REF IN-) = +1.25V$, unless otherwise noted.

				MSC1210Yx		
PA	ARAMETER	CONDITIONS	MIN TYP		MAX	UNITS
VOLTAGE REFE	RENCE INPUT		•	•	•	J.
Reference Input Range		REF IN+, REF IN-	AGND		AV _{DD} (2)	V
V _{REF}		V _{REF} = (REF IN+) - (REF IN-)	0.1	1.25	AV _{DD}	V
	A L Direction	At DC		130		dB
V _{REF} Common-M	viode Rejection	f _{CM} = 60Hz, f _{DATA} = 60Hz		120		dB
Input Current(4)		V _{REF} = 1.25V		1.5		μΑ
ON-CHIP VOLTA	GE REFERENCE	•				•
Output Voltage		VREFH = 0 at +25°C, ACLK = 1MHz	1.245	1.25	1.255	V
Power-Supply Re	ejection Ratio			65		dB
Short-Circuit Cur	rent Source			8		mA
Short-Circuit Cur	rent Sink			50		μΑ
Short-Circuit Dura	ation	Sink or Source		Indefinite		
Drift				5		ppm/°C
Output Impedance	e	Sourcing 100μA		3		Ω
Startup Time from	n Power OFF	C _{REF} = 0.1μF		8		ms
Temperature Ser	sor Voltage	T = +25°C		115		mV
Temperature Ser	sor Coefficient			375		μV/°C
ANALOG POWE	R-SUPPLY REQUIREMENT	s				•
Analog Power-Su	ipply Voltage	AV _{DD}	2.7		3.6	V
	Analog Current (I _{ADC} + I _{VREF})	PDADC = 1, ALVDIS = 1, DAB = 1		< 1		nA
Analog Power-Supply Current		PGA = 1, Buffer OFF		200		μΑ
	ADC Current	PGA = 128, Buffer OFF		500		μΑ
	(I _{ADC})	PGA = 1, Buffer ON		240		μΑ
		PGA = 128, Buffer ON		850		μΑ
	V _{REF} Supply Current (I _{VREF})			240		μА

⁽¹⁾ Calibration can minimize these errors.

The gain calibration cannot have a REF IN+ of more than AV_{DD} –1.5V with Buffer ON. To calibrate gain, turn Buffer OFF.

 $^{^{(3)}}$ $\Delta V_{\mbox{OUT}}$ is change in digital result.

 ^{(4) 9}pF switched capacitor at f_{SAMP} clock frequency (see Figure 13).
 (5) The input impedance for PGA = 128 is the same as that for PGA = 64 (that is, 7MΩ/64).

DIGITAL CHARACTERISTICS: $DV_{DD} = 2.7V$ to 5.25V All specifications from T_{MIN} to T_{MAX} , $f_{OSC} = 1MHz$, unless otherwise specified.

				MSC1210Yx		
PA	RAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
DIGITAL POWER-S	UPPLY REQUIREMENTS		•		•	
Digital Power-Supply Voltage		DV_DD	2.7	3.0	3.6	V
		Normal Mode, f _{OSC} = 1MHz		1.4	1.6	mA
		Normal Mode, f _{OSC} = 8MHz		8	9	mA
		Crystal Operation Stop Mode ⁽¹⁾		1		μΑ
Digital Power-Supply	Current	DV_DD	4.75	5.0	5.25	V
		Normal Mode, f _{OSC} = 1MHz		2	2.2	mA
		Normal Mode, f _{OSC} = 8MHz		17	18	mA
		Crystal Operation Stop Mode ⁽¹⁾		1		μΑ
DIGITAL INPUT/OU	TPUT (CMOS)		•	•		
1	VIH (except XIN pin)		0.6 • DV _{DD}		DV_DD	V
Logic Level	V _{IL} (except XIN pin)		DGND		0.2 • DV _{DD}	V
I/O Pin Hysteresis				700		mV
Ports 0-3, Input Lea	kage Current, Input Mode	$V_{IH} = DV_{DD}$ or $V_{IH} = 0V$		< 1		pA
Pins EA, XIN Input L	eakage Current			< 1		pA
		I _{OL} = 1mA	DGND		0.4	V
V _{OL} , ALE, PSEN, Po	orts 0-3, All Output Modes	I _{OL} = 30mA		1.5		V
V 41.5 50511 B	1.0.00 D: 0.1.1	I _{OH} = 1mA	DV _{DD} - 0.4	DV _{DD} - 0.1	DV _{DD}	V
VOH, ALE, PSEN, Po	orts 0–3, Strong Drive Output	I _{OH} = 30mA		DV _{DD} – 1.5		V
Ports 0-3, Pull-Up R	esistors			9		kΩ
Pins ALE, PSEN, Pu	II-Up Resistors	Flash Programming Mode Only		9		kΩ
Pin RST, Pull-Down	Resistor			500		kΩ

⁽¹⁾ Digital Brownout Detect disabled (HCR1.2 = 1), Low Voltage Detect disabled (LVDCON.3 =1). Ports configured for input or CMOS output.

FLASH MEMORY CHARACTERISTICS: DV_{DD} = 2.7V to 5.25V

			MSC1210Yx		
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Flash Memory Endurance		100,000	1,000,000		cycles
Flash Memory Data Retention		100			years
Mass and Page Erase Time	Set with FER in FTCON	10			ms
Flash Memory Write Time	Set with FWR in FTCON	30		40	μs
	DV _{DD} = 3.0V			10	mA
Flash Programming Current	DV _{DD} = 5.0V			25	mA

AC ELECTRICAL CHARACTERISTICS(1)(2): $DV_{DD} = 2.7V$ to 5.25V

			2.7\	/ to 3.6V	4.75	V to 5.25V		
SYMBOL	FIGURE	PARAMETER	MIN	MAX	MIN	MAX	UNITS	
System Clo	ock				L		ı	
		External Crystal Frequency (fosc)	1	18	1	33	MHz	
1/t _{CLK} ⁽⁴⁾	4	External Clock Frequency (fOSC)	0	18	0	33	MHz	
OLK		External Ceramic Resonator Frequency (fosc)	1	16	1	16	MHz	
Program M	emory		•	•	•		•	
^t LHLL	1	ALE Pulse Width	1.5t _{CLK} - 5		1.5t _{CLK} - 5		ns	
^t AVLL	1	Address Valid to ALE LOW	0.5t _{CLK} - 10		0.5t _{CLK} - 7		ns	
tLLAX	1	Address Hold After ALE LOW	0.5t _{CLK}		0.5t _{CLK}		ns	
tLLIV	1	ALE LOW to Valid Instruction In		2.5t _{CLK} - 35		2.5t _{CLK} - 25	ns	
tLLPL	1	ALE LOW to PSEN LOW	0.5t _{CLK}		0.5t _{CLK}		ns	
^t PLPH	1	PSEN Pulse Width	2t _{CLK} - 5		2t _{CLK} - 5		ns	
t _{PLIV}	1	PSEN LOW to Valid Instruction in		2t _{CLK} - 40		2t _{CLK} - 30	ns	
^t PXIX	1	Input Instruction Hold After PSEN	5		-5		ns	
^t PXIZ	1	Input Instruction Float After PSEN		t _{CLK} - 5		^t CLK	ns	
t _{AVIV}	1	Address to Valid Instruction In		3t _{CLK} - 40		3t _{CLK} - 25	ns	
^t PLAZ	1	PSEN LOW to Address Float		0		0	ns	
Data Memo	ory							
+	2	RD Pulse Width (t _{MCS} = 0) ⁽⁵⁾	2t _{CLK} - 5		2t _{CLK} - 5		ns	
^t RLRH		RD Pulse Width (t _{MCS} > 0) ⁽⁵⁾	t _{MCS} - 5		t _{MCS} - 5		ns	
t	3	WR Pulse Width $(t_{MCS} = 0)^{(5)}$	2t _{CLK} - 5		2t _{CLK} - 5		ns	
^t WLWH		WR Pulse Width (t _{MCS} > 0) ⁽⁵⁾	t _{MCS} - 5		t _{MCS} - 5		ns	
t _{RLDV}	2	RD LOW to Valid Data In (t _{MCS} = 0) ⁽⁵⁾		2t _{CLK} - 40		2t _{CLK} - 30	ns	
-KLDV		RD LOW to Valid Data In (t _{MCS} > 0) ⁽⁵⁾	_	t _{MCS} - 40	_	t _{MCS} - 30	ns	
^t RHDX	2	Data Hold After Read	-5		-5		ns	
^t RHDZ	2	Data Float After Read (t _{MCS} = 0) ⁽⁵⁾		t _{CLK}		t _{CLK}	ns	
TUIDE		Data Float After Read (t _{MCS} > 0)(5)		^{2t} CLK		^{2t} CLK	ns	
tLLDV	2	ALE LOW to Valid Data In $(t_{MCS} = 0)^{(5)}$ ALE LOW to Valid Data In $(t_{MCS} > 0)^{(5)}$		2.5t _{CLK} - 40		2.5t _{CLK} - 25	ns ns	
		Address to Valid Data In (t _{MCS} = 0) ⁽⁵⁾		t _{CLK} + t _{MCS} - 40		t _{CLK} + t _{MCS} - 25	ns	
^t AVDV	2	Address to Valid Data In (t _{MCS} > 0) ⁽⁵⁾		1.5t _{CLK} + t _{MCS} - 40		1.5t _{CLK} + t _{MCS} - 25	ns	
		ALE LOW to RD or WR LOW (t _{MCS} = 0) ⁽⁵⁾	0.5t _{CLK} - 5	0.5t _{CLK} + 5	0.5t _{CLK} - 5	0.5t _{CLK} + 5	ns	
^t LLWL	2, 3	ALE LOW to \overline{RD} or \overline{WR} LOW ($t_{MCS} > 0$) ⁽⁵⁾	t _{CLK} - 5	t _{CLK} + 5	t _{CLK} - 5	tCLK + 5	ns	
		Address to RD or WR LOW (t _{MCS} = 0) ⁽⁵⁾	t _{CLK} - 5	OLIK	tCLK - 5	OLIK	ns	
^t AVWL	2, 3	Address to RD or WR LOW (t _{MCS} > 0) ⁽⁵⁾	2t _{CLK} - 5		2t _{CLK} - 5		ns	
tQVWX	3	Data Valid to WR Transition	-8		-5		ns	
tWHQX	3	Data Hold After WR	t _{CLK} - 8		t _{CLK} - 5		ns	
^t RLAZ	2	RD LOW to Address Float		-0.5t _{CLK} - 5		-0.5t _{CLK} - 5	ns	
	0.0	RD or WR HIGH to ALE HIGH (t _{MCS} = 0) ⁽⁵⁾	-5	5	-5	5	ns	
tWHLH	2, 3	\overline{RD} or \overline{WR} HIGH to ALE HIGH (t _{MCS} > 0) ⁽⁵⁾	t _{CLK} - 5	t _{CLK} + 5	t _{CLK} - 5	t _{CLK} + 5	ns	
External CI	ock							
tHIGH	4	HIGH Time(3)	15		10		ns	
tLOW	4	LOW Time(3)	15		10		ns	
t _R	4	Rise Time ⁽³⁾		5		5	ns	
t _F	4	Fall Time ⁽³⁾		5		5	ns	

- (1) Parameters are valid over operating temperature range, unless otherwise specified.
 (2) Load capacitance for Port 0, ALE, and PSEN = 100pF; load capacitance for all other outputs = 80pF.
 (3) These values are characterized but not 100% production tested.
 (4) t_{CLK} = 1/fosc = one oscillator clock period.
 (5) t_{MCS} is a time period related to the Stretch MOVX selection. The following table shows the value of t_{MCS} for each stretch selection:

MD2	MD1	MD0	MOVX DURATION	tMCS
0	0	0	2 Machine Cycles	0
0	0	1	3 Machine Cycles (default)	^{4t} CLK
0	1	0	4 Machine Cycles	8t _{CLK}
0	1	1	5 Machine Cycles	12t _{CLK}
1	0	0	6 Machine Cycles	16t _{CLK}
1	0	1	7 Machine Cycles	20t _{CLK}
1	1	0	8 Machine Cycles	24tCLK
1	1	1	9 Machine Cycles	28t _{CLK}

EXPLANATION OF THE AC SYMBOLS

Each Timing Symbol has five characters. The first character is always 't' (= time). The other characters, depending on their positions, indicate the name of a signal or the logical status of that signal. The designators are:

R-RD Signal A-Address C—Clock t-Time V-Valid D-Input Data W—WR Signal H-Logic Level HIGH

I—Instruction (program memory contents) X-No Longer a Valid Logic Level

L-Logic Level LOW, or ALE Z-Float P-PSEN Examples:

Q-Output Data

(1) t_{AVLL} = Time for address valid to ALE LOW. (2) t_{LLPL} = Time for ALE LOW to \overline{PSEN} LOW.

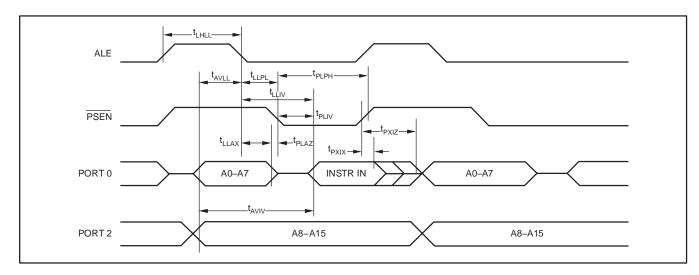


Figure 1. External Program Memory Read Cycle

Figure 2. External Data Memory Read Cycle

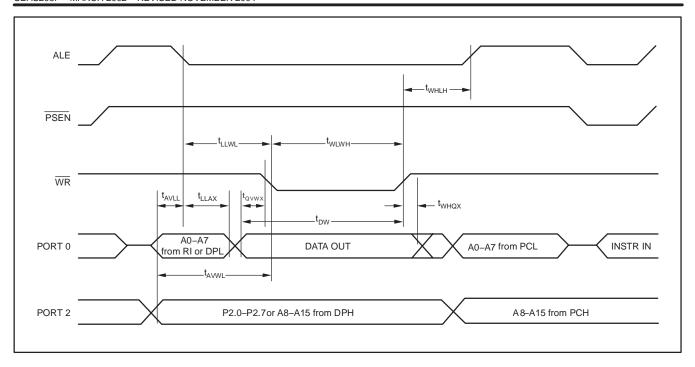


Figure 3. External Data Memory Write Cycle

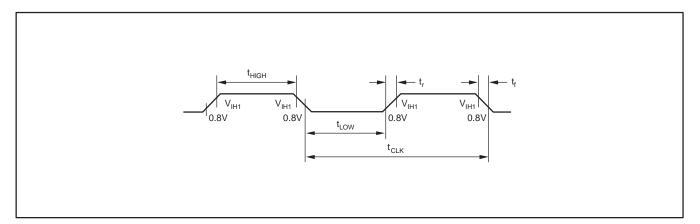


Figure 4. External Clock Drive CLK

RESET AND POWER-ON TIMING

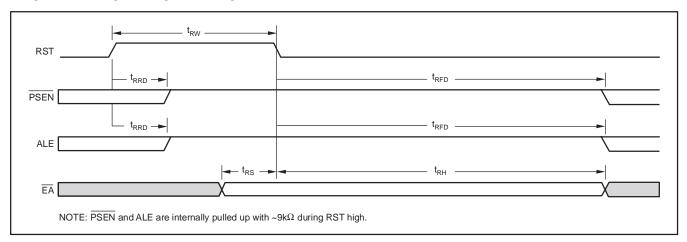


Figure 5. Reset Timing

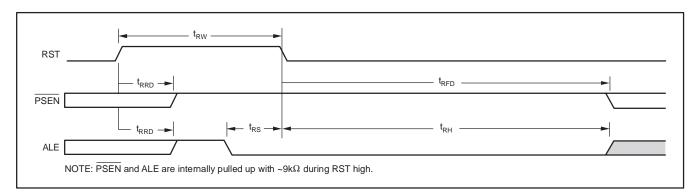


Figure 6. Parallel Flash Programming Power-On Timing (EA is ignored)

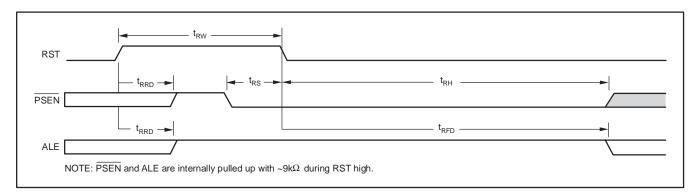
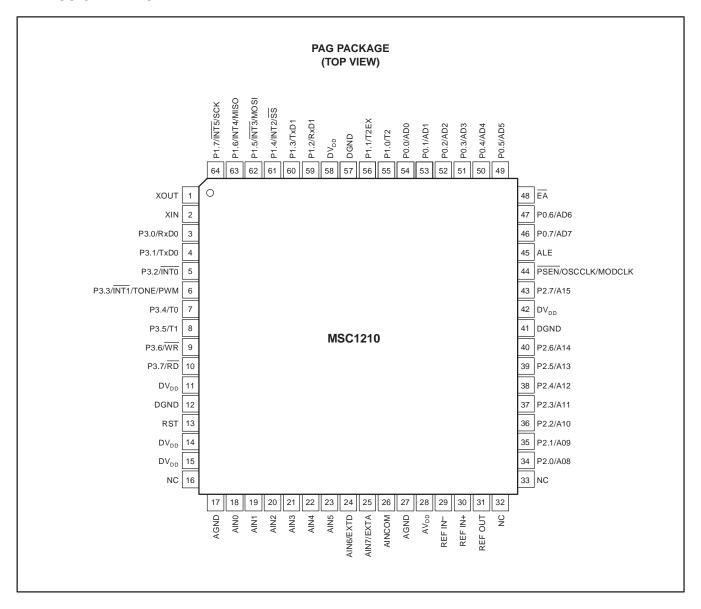
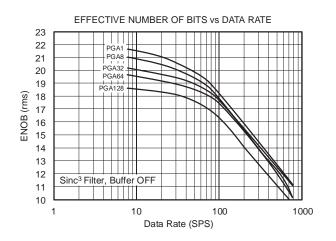



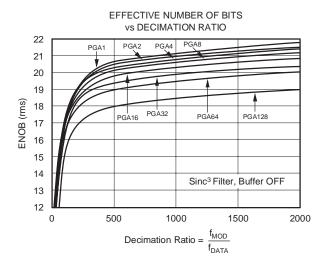
Figure 7. Serial Flash Programming Power-On Timing (EA is ignored)

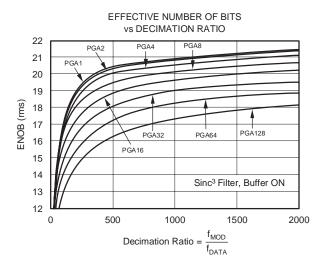
SYMBOL	PARAMETER	MIN	MAX	UNIT
t _{RW}	RST width	^{2t} OSC	_	ns
^t RRD	RST rise to PSEN ALE internal pull HIGH	_	5	μs
t _{RFD}	RST falling to PSEN and ALE start	_	(2 ¹⁷ + 512)t _{OSC}	ns
t _{RS}	Input signal to RST falling setup time	tosc	_	ns
^t RH	RST falling to input signal hold time	(2 ¹⁷ + 512)t _{OSC}		ns

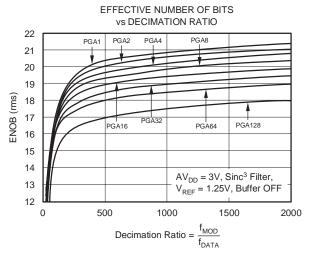
PIN ASSIGNMENTS

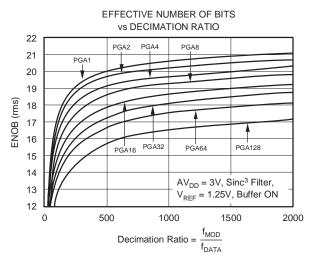
PIN DESCRIPTIONS

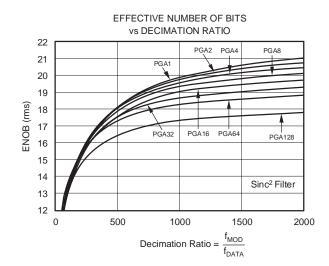

PIN#	NAME		DESCRIPTION							
1	XOUT		lator pin XOUT supports parallel re IT serves as the output of the crys	esonant AT cut fundamental frequency crystals and ceramic tal amplifier.						
2	XIN			onant AT cut fundamental frequency crystals and ceramic external clock source instead of a crystal.						
3–10	P3.0-P3.7	Port 3 is a bidire	ctional I/O port. The alternate func	tions for Port 3 are listed below.						
		PORT 3.x	Alternate Name(s)	Alternate Use						
İ		P3.0	RxD0	Serial port 0 input						
		P3.1	TxD0	Serial port 0 output						
		P3.2	INT0	External interrupt 0						
İ		P3.3	INT1/TONE/PWM	External interrupt 1/TONE/PWM output						
		P3.4	T0	Timer 0 external input						
		P3.5	T1	Timer 1 external input						
		P3.6	WR	External data memory write strobe						
		P3.7	RD	External data memory read strobe						
11, 14, 15, 42, 58	DV _{DD}	Digital power sup	oply							
12, 41, 57	DGND	Digital ground								
13	RST	A HIGH on the re	eset input for two tOSC periods res	sets the device.						
16, 32, 33	NC	No connection								
17, 27	AGND	Analog ground								
18	AIN0	Analog input cha	innel 0							
19	AIN1	Analog input cha	innel 1							
20	AIN2	Analog input cha	innel 2							
21	AIN3	Analog input cha	innel 3							
22	AIN4	Analog input cha	innel 4							
23	AIN5	Analog input cha	innel 5							
24	AIN6, EXTD	Analog input cha	innel 6, digital low-voltage detect in	nput, generates DLVD interrupt						
25	AIN7, EXTA	Analog input cha	innel 7, analog low-voltage detect i	input, generates ALVD interrupt						
26	AINCOM	Analog common	for single-ended inputs or analog i	input for differential inputs						
28	AV _{DD}	Analog power su	ipply. AVDD must rise above 2.0V	to disable Analog Brownout Reset function.						
29	REF IN-	Voltage referenc	e negative input (must be tied to A	GND for internal V _{REF})						
30	REF IN+	Voltage referenc	e positive input							
31	REF OUT	Voltage referenc	e output (tie to REF IN+ for interna	al V _{REF} use)						
34–40, 43	P2.0-P2.7	Port 2 is a bidire	ctional I/O port. The alternate func	tions for Port 2 are listed below. Refer to P2DDR, SFR B1h–B2h.						
		PORT 2.x	Alternate Name	Alternate Use						
		P2.0	A8	Address bit 8						
		P2.1	A9	Address bit 9						
		P2.2	A10	Address bit 10						
		P2.3	A11	Address bit 11						
		P2.4	A12	Address bit 12						
		P2.5	A13	Address bit 13						
		P2.6	A14	Address bit 14						
		P2.7	A15	Address bit 15						

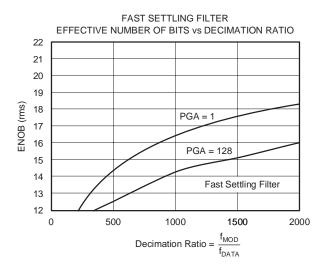

PIN DESCRIPTIONS (continued)

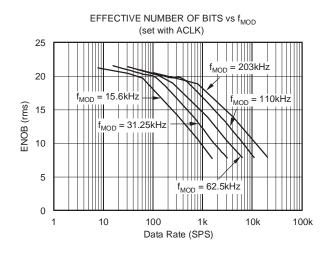

PIN#	NAME		Di	ESCRIPTION					
44	PSEN, OSCCLK, MODCLK	In programming m PSEN is held HIG (when not using e	ode, PSEN is used as an input alo H for parallel programming mode a xternal memory) to output the oscil	al memory as a chip enable. PSEN provides an active low pulse. ng with ALE to define serial or parallel programming mode. and LOW for serial programming. This pin can also be selected llator clock, modulator clock, HIGH, or LOW. Care should be tly cause the device to enter programming mode.					
		ALE	PSEN	Program Mode Selection					
		NC	NC	Normal operation (User Application mode)					
		0	NC	Parallel programming					
		NC	0	Serial programming					
		0	0	Reserved					
45	ALE	at a constant rate of skipped during each define serial or para programming. This	Address Latch Enable: Used for latching the low byte of the address during an access to external memory. ALE is en at a constant rate of 1/4 the oscillator frequency, and can be used for external timing or clocking. One ALE pulse is skipped during each access to external data memory. In programming mode, ALE is used as an input along with PSE define serial or parallel programming mode. ALE is held HIGH for parallel programming mode and LOW for parallel programming. This pin can also be selected (when not using external memory) to output HIGH or LOW. Care should taken so that loading on this pin does not inadvertently cause the device to enter programming mode.						
48	ĒĀ		,	LOW at the end of RESET to enable the device to fetch code n 0000h. No internal pull-up on this pin.					
46, 47, 49–54	P0.0-P0.7	Port 0 is a bidirectional I/O port. The alternate functions for Port 0 are listed below. Refer to P1DDR, SFR AEh–AFh.							
		PORT 0.x	Alternate Name	Alternate Use					
		P0.0	AD0	Address/Data bit 0					
		P0.1	AD1	Address/Data bit 1					
		P0.2	AD2	Address/Data bit 2					
		P0.3	AD3	Address/Data bit 3					
		P0.4	AD4	Address/Data bit 4					
		P0.5	AD5	Address/Data bit 5					
		P0.6	AD6	Address/Data bit 6					
		P0.7	AD7	Address/Data bit 7					
55, 56, 59–64	P1.0-P1.7	Port 0 is a bidirect	ional I/O port. The alternate function	ons for Port 0 are listed below. Refer to P1DDR, SFR AEh-AFh.					
		PORT 0.x	Alternate Name(s)	Alternate Use					
		P1.0	T2	T2 input					
		P1.1	T2EX	T2 external input					
		P1.2	RxD1	Serial port input					
		P1.3	TxD1	Serial port output					
		P1.4	INT2/SS	External Interrupt / Slave Select					
		P1.5	INT3/MOSI	External Interrupt / Master Out-Slave In					
		P1.6	INT4/MISO	External Interrupt / Master In-Slave Out					
		P1.7	INT5/SCK	External Interrupt / Serial Clock					

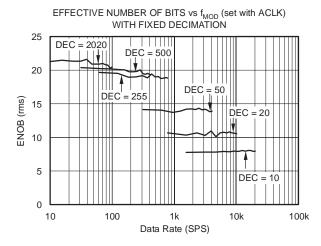


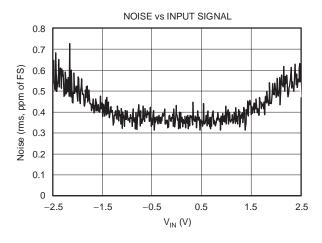

TYPICAL CHARACTERISTICS

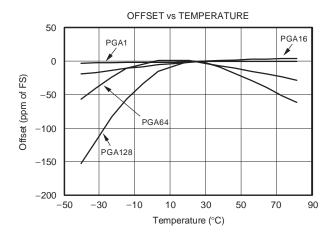


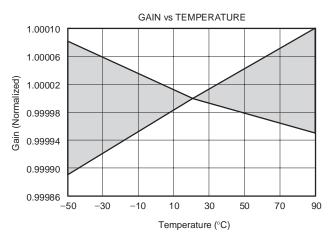


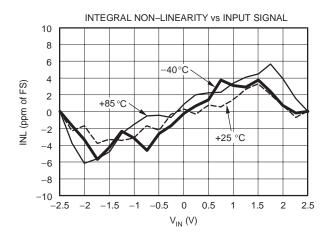


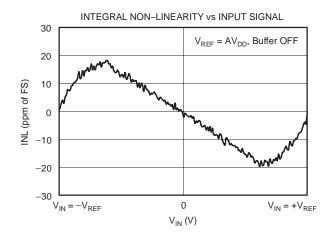


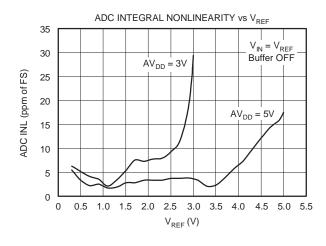


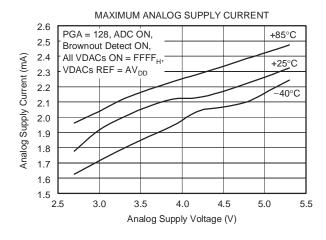


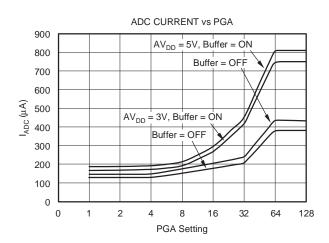


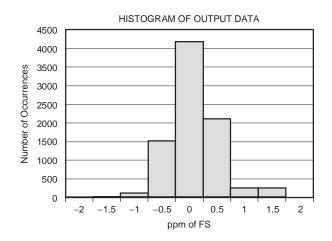


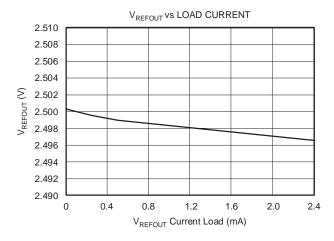


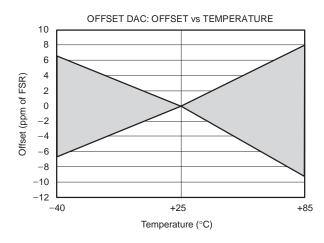


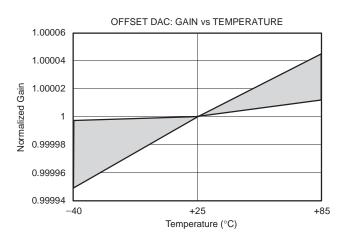


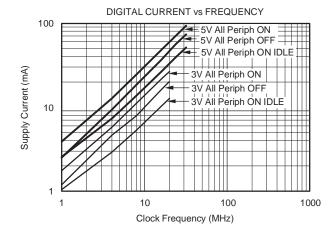


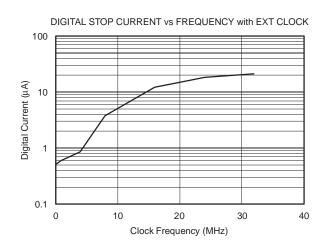


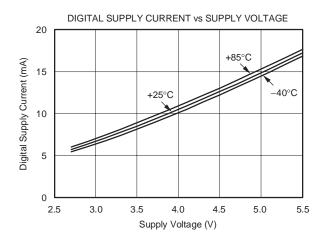


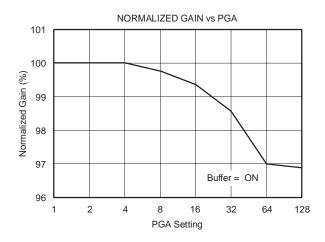


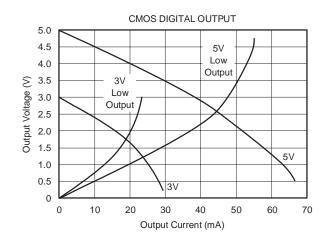












DESCRIPTION

The MSC1210Yx is a completely integrated family of mixed-signal devices incorporating a high-resolution delta-sigma ADC, 8-channel multiplexer, burnout current sources, selectable buffered input, offset DAC (Digital-to-Analog Converter), Programmable Gain Amplifier (PGA), temperature sensor, voltage reference, 8-bit microcontroller, Flash Program Memory, Flash Data Memory, and Data SRAM, as shown in Figure 8.

On-chip peripherals include an additional 32-bit accumulator, an SPI-compatible serial port, dual USARTs, multiple digital input/output ports, watchdog timer, low-voltage detect, on-chip power-on reset, 16-bit PWM, and system timers, brownout reset, and three timer/counters.

The device accepts low-level differential or single-ended signals directly from a transducer. The ADC provides 24 bits of resolution and 24 bits of no-missing-code performance using a Sinc³ filter with a programmable sample rate. The ADC also has a selectable filter that allows for high-resolution single-cycle conversion.

The microcontroller core is 8051 instruction set compatible. The microcontroller core is an optimized 8051 core that executes up to three times faster than the standard 8051 core, given the same clock source. That makes it possible to run the device at a lower external clock frequency and achieve the same performance at lower power than the standard 8051 core.

The MSC1210Yx allows the user to uniquely configure the Flash and SRAM memory maps to meet the needs of their application. The Flash is programmable down to 2.7V using both serial and parallel programming methods. The Flash endurance is 1 million Erase/Write cycles. In addition, 1280 bytes of RAM are incorporated on-chip.

The part has separate analog and digital supplies, which can be independently powered from 2.7V to +5.5V. At +3V operation, the power dissipation for the part is typically less than 4mW. The MSC1210Yx is packaged in a TQFP-64 package.

The MSC1210Yx is designed for high-resolution measurement applications in smart transmitters, industrial process control, weigh scales, chromatography, and portable instrumentation.

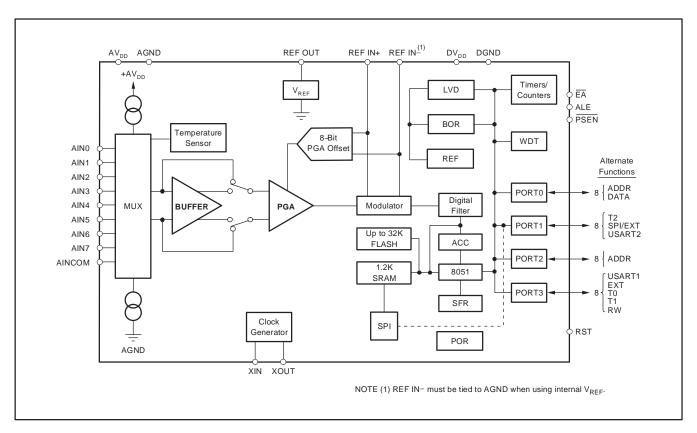


Figure 8. Block Diagram

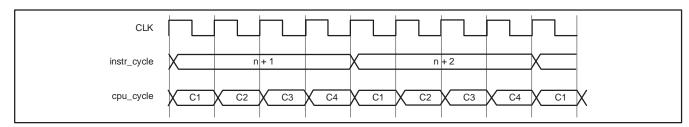


Figure 9. Instruction Timing Cycle

ENHANCED 8051 CORE

All instructions in the MSC1210 family perform exactly the same functions as they would in a standard 8051. The effect on bits, flags, and registers is the same. However, the timing is different. The MSC1210 family utilizes an efficient 8051 core which results in an improved instruction execution speed of between 1.5 and 3 times faster than the original core for the same external clock speed (4 clock cycles per instruction versus 12 clock cycles per instruction, as shown in Figure 9). The internal system clock is equal to the external oscillator frequency. This translates into an effective throughput improvement of more than 2.5 times, using the same code and same external clock speed.

Therefore, a device frequency of 33MHz for the MSC1210Yx actually performs at an equivalent execution speed of 82.5MHz compared to the standard 8051 core. This allows the user to run the device at slower external clock speeds which reduces system noise and power consumption, but provides greater throughput. This performance difference can be seen in Figure 10. The timing of software loops will be faster with the MSC1210. However, the timer/counter operation of the MSC1210 may be maintained at 12 clocks per increment or optionally run at 4 clocks per increment.

The MSC1210 also provides dual data pointers (DPTRs) to speed block Data Memory moves.

Additionally, it can stretch the number of memory cycles to access external Data Memory from between two and nine instruction cycles in order to accommodate different speeds of memory or devices, as shown in Table 1. The MSC1210 provides an external memory interface with a 16-bit address bus (P0 and P2). The 16-bit address bus makes it necessary to multiplex the low address byte through the P0 port. To enhance P0 and P2 for high-speed memory access, hardware configuration control is provided to configure the ports for external memory/peripheral interface or general-purpose I/O.

Furthermore, improvements were made to peripheral features that off-load processing from the core, and the user, to further improve efficiency. For instance, 32-bit accumulation can be done through the summation register to significantly reduce the processing overhead for the multiple byte data from the ADC or other sources. This

allows for 32-bit addition and shifting to be accomplished in a few instruction cycles, compared to hundreds of instruction cycles through a software implementation.

Table 1. Memory Cycle Stretching. Stretching of MOVX timing as defined by MD2, MD1, and MD0 bits in CKCON register (address 8Eh).

CKCON (8Eh) MD2:MD0	INSTRUCTION CYCLES (for MOVX)	RD or WR STROBE WIDTH (SYS CLKs)	RD or WR STROBE WIDTH (µs) AT 12MHz	
000	2	2	0.167	
001	3 (default)	4	0.333	
010	4	8	0.667	
011	5	12	1.000	
100	6	16	1.333	
101	7	20	1.667	
110	8	24	2.000	
111	9	28	2.333	

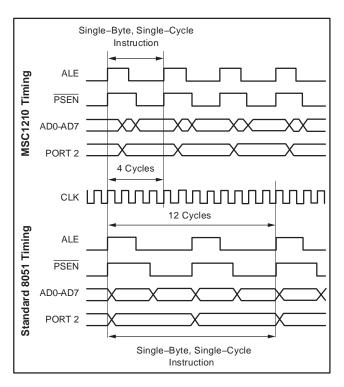


Figure 10. Comparison of MSC1210 Timing to Standard 8051 Timing

Family Device Compatibility

The hardware functionality and pin configuration across the MSC1210 family are fully compatible. To the user the only difference between family members is the memory configuration. This makes migration between family members simple. Code written for the MSC1210Y2 can be executed directly on an MSC1210Y3, MSC1210Y4, or MSC1210Y5. This gives the user the ability to add or subtract software functions and to freely migrate between family members. Thus, the MSC1210 can become a standard device used across several application platforms.

Family Development Tools

The MSC1210 is fully compatible with the standard 8051 instruction set. This means that the user can develop software for the MSC1210 with their existing 8051 development tools. Additionally, a complete, integrated development environment is provided with each demo board, and third-party developers also provide support.

Power Down Modes

The MSC1210 can power several of the on-chip peripherals and put the CPU into IDLE. For more information, see page 26.

OVERVIEW

The MSC1210 ADC structure is shown in Figure 11. The figure lists the components that make up the ADC, along with the corresponding special function register (SFR) associated with each component.

INPUT MULTIPLEXER

The input multiplexer provides for any combination of differential inputs to be selected as the input channel, as shown in Figure 12. If AINO is selected as the positive differential input channel, any other channel can be selected as the negative differential input channel. With this method, it is possible to have up to eight fully differential input channels. It is also possible to switch the polarity of the differential input pair to negate any offset voltages.

In addition, current sources are supplied that will source or sink current to detect open or short circuits on the pins.

TEMPERATURE SENSOR

On-chip diodes provide temperature sensing capability. When the configuration register for the input MUX is set to all 1s, the diodes are connected to the input of the ADC. All other channels are open.

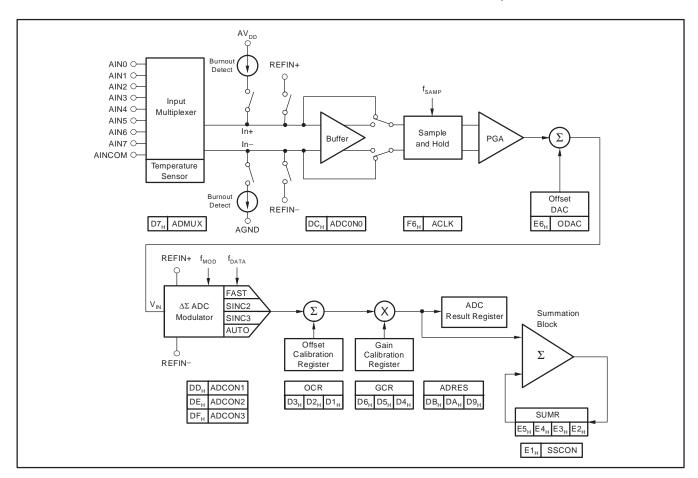


Figure 11. MSC1210 ADC Structure

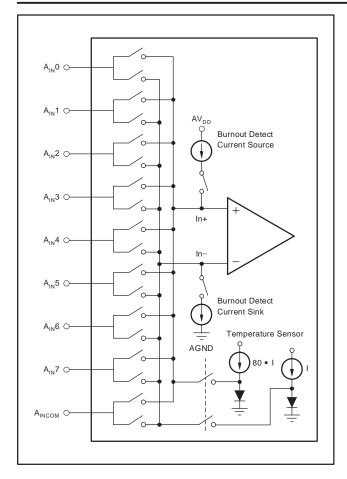


Figure 12. Input Multiplexer Configuration

BURNOUT DETECT

When the Burnout Detect (BOD) bit is set in the ADC control configuration register (ADCON0 DCh), two current sources are enabled. The current source on the positive input channel sources approximately $2\mu A$ of current. The current source on the negative input channel sinks approximately $2\mu A$. This allows for the detection of an open circuit (full-scale reading) or short circuit (small differential reading) on the selected input differential pair. Buffer should be on for sensor burnout detection.

INPUT BUFFER

The analog input impedance is always high, regardless of PGA setting (when the buffer is enabled). With the buffer enabled, the input voltage range is reduced and the analog power-supply current is higher. If the limitation of input voltage range is acceptable, then the buffer is always preferred.

The input impedance of the MSC1210 without the buffer is $7M\Omega/PGA$. The buffer is controlled by the state of the BUF bit in the ADC control register (ADCON0 DCh).

ANALOG INPUT

When the buffer is not selected, the input impedance of the analog input changes with ACLK clock frequency (ACLK F6h) and gain (PGA). The relationship is:

$$A_{IN} \text{ Impedance}(\Omega) = \left(\frac{1}{\text{ACLK Frequency}}\right) \cdot \left(\frac{7M\Omega}{\text{PGA}}\right)$$
where ACLK frequency =
$$\frac{f_{OSC}}{(\text{ACLK} + 1)}$$

and modclk =
$$f_{MOD} = \frac{f_{ACLK}}{64}$$
. NOTE: The input impedance for PGA = 128 is the same as that for

NOTE: The input impedance for PGA = 128 is the same as that for PGA = 64 (that is, $\frac{7M\Omega}{64}$).

Figure 13 shows the basic input structure of the MSC1210.

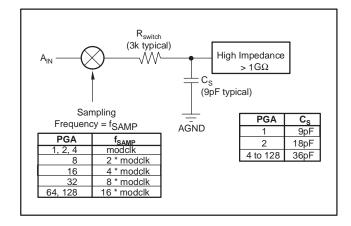


Figure 13. Analog Input Structure

MODULATOR

The modulator is a single-loop 2nd-order system. The modulator runs at a clock speed (f_{MOD}) that is derived from the CLK using the value in the Analog Clock (ACLK) register (SFR F6h). The data rate is:

$$Data Rate = \frac{f_{MOD}}{Decimation Ratio}$$

where
$$f_{MOD} = \frac{f_{OSC}}{(ACLK + 1) \cdot 64}$$

PGA

The PGA can be set to gains of 1, 2, 4, 8, 16, 32, 64, or 128. Using the PGA can actually improve the effective resolution of the ADC. For instance, with a PGA of 1 on a $\pm 2.5 \text{V}$ full-scale range, the ADC can resolve to $1.5 \mu\text{V}$. With a PGA of 128 on a $\pm 19 \text{mV}$ full-scale range, the ADC can resolve to 75nV, as shown in Table 2.

Table 2. ENOB versus PGA (Bipolar Mode)

PGA SETTING	FULL-SCALE RANGE (V)	ENOB AT 10HZ	RMS MEASUREMENT RESOLUTION (nV)
1	±2.5V	21.7	1468
2	±1.25	21.5	843
4	±0.625	21.4	452
8	±0.313	21.2	259
16	±0.156	20.8	171
32	±0.0781	20.4	113
64	±0.039	20	74.5
128	±0.019	19	74.5

OFFSET DAC

The analog input to the PGA can be offset by up to half the full-scale input range of the PGA by using the ODAC register (SFR E6h). The ODAC (Offset DAC) register is an 8-bit value; the MSB is the sign and the seven LSBs provide the magnitude of the offset. Since the ODAC introduces an analog (instead of digital) offset to the PGA, using the ODAC does not reduce the range of the ADC.

CALIBRATION

The offset and gain errors in the MSC1210, or the complete system, can be reduced with calibration. Calibration is controlled through the ADCON1 register (SFR DDh), bits CAL2:CAL0. Each calibration process takes seven t_{DATA} (data conversion time) periods to complete. Therefore, it takes 14 t_{DATA} periods to complete both an offset and gain calibration.

For system calibration, the appropriate signal must be applied to the inputs. The system offset command requires a *zero* differential input signal. It then computes an offset value that will nullify offsets in the system. The system gain command requires a positive *full-scale* differential input signal. It then computes a value to nullify gain errors in the system. Each of these calibrations will take seven t_{DATA} periods to complete.

Calibration should be performed after power on, a change in temperature, decimation ratio, buffer, or a change of the PGA. Calibration will remove the effects of the Offset DAC; therefore, changes to the Offset DAC register must be done after calibration.

At the completion of calibration, the ADC Interrupt bit goes HIGH which indicates the calibration is finished and valid data is available.

DIGITAL FILTER

The Digital Filter can use either the Fast Settling, Sinc², or Sinc³ filter, as shown in Figure 14. In addition, the Auto mode changes the Sinc filter after the input channel or PGA is changed. When switching to a new channel, it will use the Fast Settling filter for the next two conversions (the first of which should be discarded). It will then use the Sinc² followed by the Sinc³ filter to improve noise performance.

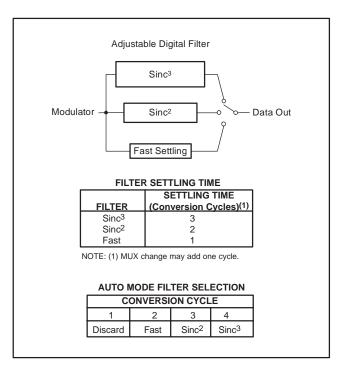


Figure 14. Filter Step Responses

This combines the low-noise advantage of the Sinc³ filter with the quick response of the Fast Settling Time filter. The frequency response of each filter is shown in Figure 15.

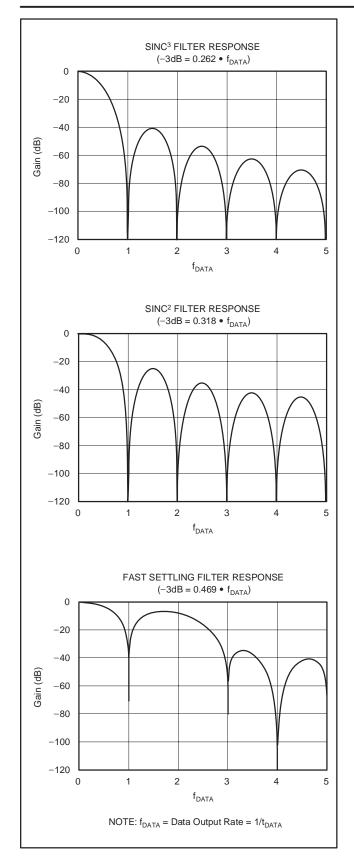


Figure 15. Filter Frequency Responses

VOLTAGE REFERENCE

The MSC1210 can use either an internal or external voltage reference. The voltage reference selection is controlled via ADC Control Register 0 (ADCON0, SFR DCh). The default power-up configuration for the voltage reference is 2.5V internal.

The internal voltage reference can be selected as either 1.25V or 2.5V. The analog power supply (AV_{DD}) must be within the specified range for the selected internal voltage reference. The valid ranges are: $V_{REF}=2.5$ internal (AV_{DD} = 3.3V to 5.25V) and $V_{REF}=1.25$ internal (AV_{DD} = 2.7V to 5.25V). If the internal V_{REF} is selected, then the REFOUT pin must be connected to REFIN+, and AGND must be connected to REFIN-. The REFOUT pin should also have a $0.1\mu F$ capacitor connected to AGND, as close as possible to the pin. If the internal V_{REF} is not used, then V_{REF} should be disabled in ADCON0.

If the external voltage reference is selected, it can be used as either a single-ended input or differential input, for ratiometric measures. When using an external reference, it is important to note that the input current will increase for V_{REF} with higher PGA settings and with a higher modulator frequency. The external voltage reference can be used over the input range specified in the *Electrical Characteristics* section.

POWER-ON RESET

The on-chip power-on reset (POR) circuitry releases the device from reset at approximately $DV_{DD} = 2.0V$. The POR accommodates power-supply ramp rates as slow as 1V/10ms. To ensure proper operation, the power supply should ramp monotonically. Note that as the device is released from reset and program execution begins, the device current consumption may increase, which may result in a power-supply voltage drop. If the power supply ramps at a slower rate, is not monotonic, or a brownout condition occurs (where the supply does not drop below the 2.0V threshold), then improper device operation may occur. The on-chip brownout reset may provide benefit in these conditions. Figure 16 shows a POR circuit.

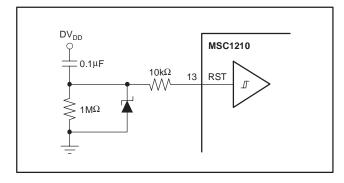


Figure 16. POR Circuit

BROWNOUT RESET

The brownout reset (BOR) is enabled through Hardware Configuration Register 1 (HCR1). If the conditions for proper POR are not met or the device encounters a brownout condition that does not generate a POR, the BOR can be used to ensure proper device operation. The BOR will hold the state of the device when the power supply drops below the threshold level programmed in HCR1, and then generate a reset when the supply rises above the threshold level. Note that as the device is released from reset, and program execution begins, the device current consumption may increase, which may result in a power-supply voltage drop, which may initiate another brownout condition.

The BOR level should be chosen to match closely with the application. For example, with a high external clock frequency, the BOR level should match the minimum operating voltage range for the device, or improper operation may still occur.

Note that AV_{DD} must rise above 2.0V for the Analog Brownout Reset function to be disabled; otherwise, it will be enabled and hold the device in reset.

POWER-DOWN MODES

The MSC1210 can power several of the on-chip peripherals and put the CPU into IDLE. This is accomplished by shutting off the clocks to those sections, as shown in Figure 17. For lowest power, be sure that the FRCM bit in FMCON is set.

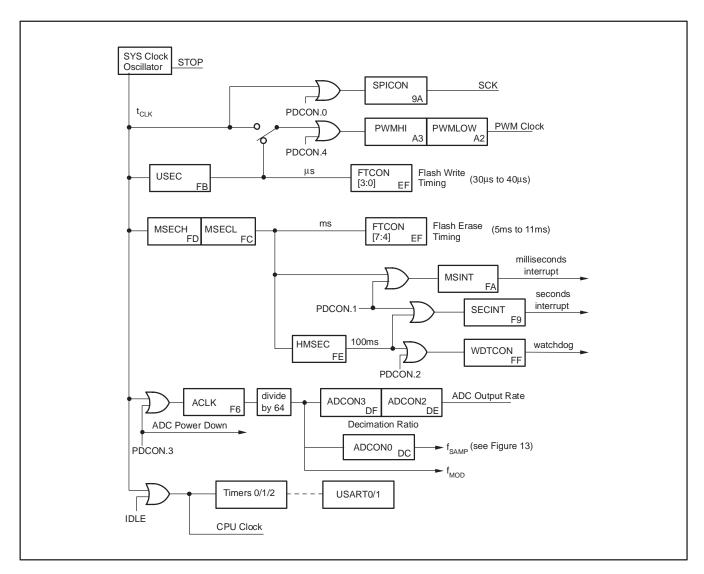


Figure 17. MSC1210 Timing Chain and Clock Control

MEMORY MAP

The MSC1210 contains on-chip SFR, Flash Memory, Scratchpad SRAM Memory, Boot ROM, and SRAM. THe SFR registers are primarily used for control and status. The standard 8051 features and additional peripheral features of the MSC1210 are controlled through the SFR. Reading from an undefined SFR and writing to undefined SFR registers is not recommended, and will have indeterminate effects.

Flash Memory is used for both Program Memory and Data Memory. The user has the ability to select the partition size of Program and Data Memories. The partition size is set through hardware configuration bits, which are programmed through either the parallel or serial programming methods. Both Program and Data Flash Memories are erasable and writable (programmable) in User Application mode (UAM). However, program execution can only occur from Program Memory. As an added precaution, a lock feature can be activated through the hardware configuration bits, which disables erase and writes to 4kB of Program Flash Memory or the entire Program Flash Memory in UAM.

The MSC1210 includes 1kB of SRAM on-chip. SRAM starts at address 0 and is accessed through the MOVX instruction. This SRAM can also be located to start at 8400h and can be accessed as both Program and Data Memory.

FLASH MEMORY

The MSC1210 uses a memory addressing scheme that separates Program Memory (FLASH/ROM) from Data Memory (FLASH/RAM). Each area is 64kB beginning at address 0000h and ending at FFFFh, as shown in Figure 18. The program and data segments can overlap since they are accessed in different ways. Program Memory is fetched by the microcontroller automatically. There is one instruction (MOVC) that is used to explicitly read the program area. This is commonly used to read lookup tables.

The Data Memory area is accessed explicitly using the MOVX instruction. This instruction provides multiple ways of specifying the target address. It is used to access the 64kB of Data Memory. The address and data range of devices with on-chip Program and Data Memory overlap the 64kB memory space. When on-chip memory is enabled, accessing memory in the on-chip range will cause the device to access internal memory. Memory accesses beyond the internal range will be addressed externally via Ports 0 and 2.

The MSC1210 has two Hardware Configuration registers (HCR0 and HCR1) that are programmable only during Flash Memory Programming mode.

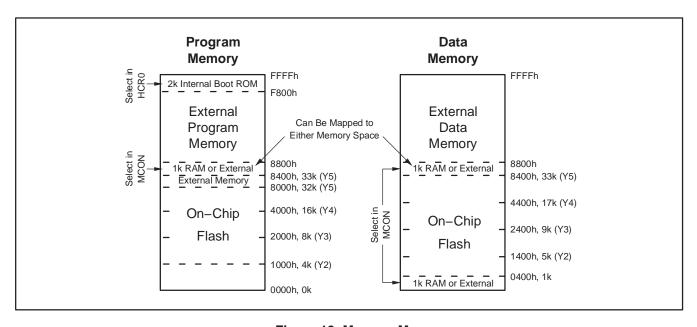


Figure 18. Memory Map

The MSC1210 allows the user to partition the Flash Memory between Program Memory and Data Memory. For instance, the MSC1210Y5 contains 32kB of Flash Memory on-chip. Through the HW configuration registers, the user can define the partition between Program Memory (PM) and Data Memory (DM), as shown in Table 3 and Table 4. The MSC1210 family offers four memory configurations, as shown.

Table 3. MSC1210 Flash Partitioning

HCR0	MSC1210Y2		MSC1210Y3		MSC1	210Y4	MSC1210Y5	
DFSEL	PM	DM	PM	DM	PM	DM	PM	DM
000	0kB	4kB	0kB	8kB	0kB	16kB	0kB	32kB
001	0kB	4kB	0kB	8kB	0kB	16kB	0kB	32kB
010	0kB	4kB	0kB	8kB	0kB	16kB	16kB	16kB
011	0kB	4kB	0kB	8kB	8kB	8kB	24kB	8kB
100	0kB	4kB	4kB	4kB	12kB	4kB	28kB	4kB
101	2kB	2kB	6kB	2kB	14kB	2kB	30kB	2kB
110	3kB	1kB	7kB	1kB	15kB	1kB	31kB	1kB
111 (default)	4kB	0kB	8kB	0kB	16kB	0kB	32kB	0kB

NOTE: When a 0kB program memory configuration is selected, program execution is external.

Table 4. MSC1210 Flash Memory Partitioning

HCR0	MSC1	210Y2	MSC1	MSC1210Y3		210Y4	MSC1	210Y5
DFSEL	PM	DM	PM	DM	PM	DM	PM	DM
000	0000	0400- 13FF	0000	0400- 23FF	0000	0400- 43FF	0000	0000- 83FF
001	0000	0400- 13FF	0000	0400- 23FF	0000	0400- 43FF	0000	0400- 83FF
010	0000	0400- 13FF	0000	0400- 23FF	0000	0400- 43FF	0000- 3FFF	0400- 43FF
011	0000	0400- 13FF	0000	0400- 23FF	0000- 1FFF	0400- 23FF	0000- 5FFF	0400- 23FF
100	0000	0400- 13FF	0000- 0FFF	0400- 13FF	0000- 2FFF	0400- 13FF	0000- 6FFF	0400- 13FF
101	0000- 07FF	0400- 0BFF	0000- 17FF	0400- 0BFF	0000- 37FF	0400- 0BFF	0000- 77FF	0400- 0BFF
110	0000- 0BFF	0400- 07FF	0000- 1BFF	0400- 07FF	0000- 3BFF	0400- 07FF	0000- 7BFF	0400- 07FF
111 (default)	0000- 0FFF	0000	0000- 1FFF	0000	0000- 3FFF	0000	0000- 7FFF	0000

NOTE: Program memory accesses above the highest listed address will access external program memory.

It is important to note that the Flash Memory is readable and writable by the user through the MOVX instruction when configured as either Program or Data Memory (via the MXWS bit in the MWS, SFR 8Fh). This means that the user may partition the device for maximum Flash Program Memory size (no Flash Data Memory) and use Flash Program Memory as Flash Data Memory. This may lead to undesirable behavior if the PC points to an area of Flash Program Memory that is being used for data storage. Therefore, it is recommended to use Flash partitioning when Flash Memory is used for data storage. Flash partitioning prohibits execution of code from Data Flash Memory. Additionally, the Program Memory erase/write can be disabled through hardware configuration bits (HCR0), while still providing access (read/write/erase) to Data Flash Memory.

The effect of memory mapping on Program and Data Memory is straightforward. The Program Memory is decreased in size from the top of internal Program Memory. Therefore, if the MSC1210Y5 is partitioned with 31kB of Flash Program Memory and 1kB of Flash Data Memory, external Program Memory execution will begin at 7C00h (versus 8000h for 32kB). The Flash Data Memory is added on top of the SRAM memory. Therefore, access to Data Memory (through MOVX) will access SRAM for addresses 0000h–03FFh and access Flash Memory for addresses 0400h–07FFh.

Data Memory

The MSC1210 can address 64kB of Data Memory. Scratchpad Memory provides 256 bytes in addition to the 64kB of Data Memory. The MOVX instruction is used to access the Data SRAM Memory. This includes 1,024 bytes of on-chip Data SRAM Memory. The data bus values do not appear on Port 0 (during data bus timing) for internal memory access.

The MSC1210 also has on-chip Flash Data Memory which is readable and writable (depending on Memory Write Select register) during normal operation (full V_{DD} range). This memory is mapped into the external Data Memory space directly above the SRAM.

The MOVX instruction is used to write the flash memory. Flash memory must be erased before it can be written. Flash memory is erased in 128 byte pages.

REGISTER MAP

The Register Map is illustrated in Figure 19. It is entirely separate from the Program and Data Memory areas mentioned before. A separate class of instructions is used to access the registers. There are 256 potential register locations. In practice, the MSC1210 has 256 bytes of Scratchpad RAM and up to 128 SFRs. This is possible, since the upper 128 Scratchpad RAM locations can only be accessed indirectly. Thus, a direct reference to one of the upper 128 locations must be an SFR access. Direct RAM is reached at locations 0 to 7Fh (0 to 127).

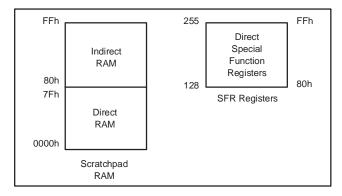


Figure 19. Register Map

SFRs are accessed directly between 80h and FFh (128 to 255). The RAM locations between 128 and 255 can be reached through an indirect reference to those locations. Scratchpad RAM is available for general-purpose data storage. It is commonly used in place of off-chip RAM when the total data contents are small. When off-chip RAM is needed, the Scratchpad area will still provide the fastest general-purpose access. Within the 256 bytes of RAM, there are several special-purpose areas.

Bit Addressable Locations

In addition to direct register access, some individual bits are also accessible. These are individually addressable bits in both the RAM and SFR area. In the Scratchpad RAM area, registers 20h to 2Fh are bit addressable. This provides 128 (16×8) individual bits available to software. A bit access is distinguished from a full-register access by the type of instruction. In the SFR area, any register location ending in a 0 or 8 is bit addressable. Figure 20 shows details of the on-chip RAM addressing including the locations of individual RAM bits.

Working Registers

As part of the lower 128 bytes of RAM, there are four banks of Working Registers, as shown in Figure 20. The Working Registers are general-purpose RAM locations that can be addressed in a special way. They are designated R0 through R7. Since there are four banks, the currently

selected bank will be used by any instruction using R0—R7. This allows software to change context by simply switching banks. This is controlled via the Program Status Word register (PSW; 0D0h) in the SFR area described below. Registers R0 and R1 also allow their contents to be used for indirect addressing of the upper 128 bytes of RAM. Thus, an instruction can designate the value stored in R0 (for example) to address the upper RAM. The 16 bytes immediately above the R0—R7 registers are bit addressable. So any of the 128 bits in this area can be directly accessed using bit addressable instructions.

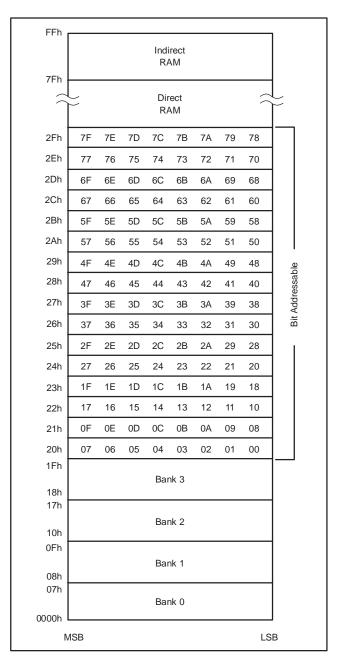


Figure 20. Scratchpad Register Addressing

Stack

Another use of the Scratchpad area is for the programmer's stack. This area is selected using the Stack Pointer (SP; 81h) SFR. Whenever a call or interrupt is invoked, the return address is placed on the Stack. It also is available to the programmer for variables, etc., since the Stack can be moved and there is no fixed location within the RAM designated as Stack. The Stack Pointer will default to 07h on reset. The user can then move it as needed. A convenient location would be the upper RAM area (> 7Fh) since this is only available indirectly. The SP will point to the last used value. Therefore, the next value placed on the Stack is put at SP + 1. Each PUSH or CALL will increment the SP by the appropriate value. Each POP or RET will decrement as well.

Program Memory

After reset, the CPU begins execution from Program Memory location 0000h. The selection of where Program Memory execution begins is made by tying the \overline{EA} pin to DV_{DD} for internal access, or DGND for external access. When \overline{EA} is tied to DV_{DD}, any PC fetches outside the internal Program Memory address occur from external memory. If \overline{EA} is tied to DGND, then all PC fetches address external memory. The standard internal Program Memory size for MSC1210 family members is shown in Table 5. If enabled the Boot ROM will appear from address F800h to FFFFh.

Table 5. MSC1210 Maximum Internal Program Memory Sizes

PRODUCT	STANDARD INTERNAL PROGRAM MEMORY SIZE (BYTES)
MSC1210Y5	32k
MSC1210Y4	16k
MSC1210Y3	8k
MSC1210Y2	4k

ACCESSING EXTERNAL MEMORY

If external memory is used, P0 and P2 can be configured as address and data lines. If external memory is not used, P0 and P2 can be configured as general-purpose I/O lines through the Hardware Configuration Register.

To enable access to external memory, bits 0 and 1 of the HCR1 register must be set to 0. When these bits are enabled all memory addresses for both internal and external memory will appear on ports 0 and 2. During the data portion of the cycle for internal memory, Port 0 will be zero for security purposes.

Accesses to external memory are of two types: accesses to external Program Memory and accesses to external Data Memory. Accesses to external Program Memory use signal PSEN (program store enable) as the read strobe. Accesses to external Data Memory use RD or WR (alternate functions of P3.7 and P3.6) to strobe the memory.

External Program Memory and external Data Memory may be combined if desired by applying the $\overline{\text{RD}}$ and $\overline{\text{PSEN}}$ signals to the inputs of an AND gate and using the output of the gate as the read strobe to the external Program/Data Memory.

Program fetches from external Program Memory always use a 16-bit address. Accesses to external Data Memory can use either a 16-bit address (MOVX @DPTR) or an 8-bit address (MOVX @R₁).

If Port 2 is selected for external memory use (HCR1, bit 0), it cannot be used as general-purpose I/O. This bit (or Bit 1 of HCR1) also forces bits P3.6 and P3.7 to be used for WR and RD instead of I/O. Port 2, P3.6, and P3.7 should all be written to '1.'

If an 8-bit address is being used (MOVX $@R_I$), the contents of the MPAGE (92h) SFR remain at the Port 2 pins throughout the external memory cycle. This will facilitate paging.

In any case, the low byte of the address is time-multiplexed with the data byte on Port 0. The ADDR/DATA signals use CMOS drivers in the Port 0, Port 2, \overline{WR} , and \overline{RD} output buffers. Thus, in this application the Port 0 pins are not open-drain outputs, and do not require external pull-ups for high-speed access. Signal ALE (Address Latch Enable) should be used to capture the address byte into an external latch. The address byte is valid at the negative transition of ALE. Then, in a write cycle, the data byte to be written appears on Port 0 just before \overline{WR} is activated, and remains there until after \overline{WR} is deactivated. In a read cycle, the incoming byte is accepted at Port 0 just before the read strobe is deactivated.

The functions of Port 0 and Port 2 are selected in Hardware Configuration Register 1. This can only be changed during the Flash Program mode. There is no conflict in the use of these registers; they will either be used as general-purpose I/O or for external memory access. The default state is for Port 0 and Port 2 to be used as general-purpose I/O. If an external memory access is attempted when they are configured as general-purpose I/O, the values of Port 0 and Port 2 will not be affected.

External Program Memory is accessed under two conditions:

- 1. Whenever signal EA is LOW during reset, then all future accesses are external; or
- 2. Whenever the Program Counter (PC) contains a number that is outside of the internal Program Memory address range, if the ports are enabled.

If Port 0 and Port 2 are selected for external memory, all 8 bits of Port 0 and Port 2, as well as P3.6 and P3.7, are dedicated to an output function and may not be used for general-purpose I/O. During external program fetches, Port 2 outputs the high byte of the PC.

Programming Flash Memory

There are four sections of Flash Memory for programming:

- 1. 128 configuration bytes.
- Reset sector (4kB) (not to be confused with the 2kB Boot ROM).
- 3. Program Memory.
- 4. Data Memory.

Boot ROM

There is a 2kB Boot ROM that controls operation during serial or parallel programming. Additionally, the Boot ROM routines can be accessed during the user mode if it is enabled. When enabled, the Boot ROM routines will be located at memory addresses F800h–FFFFh during user mode. In program mode the Boot ROM is located in the first 2kB of Program Memory. For additional information, refer to the Application Note SBAA085, available for download from the TI web site (www.ti.com).

Flash Programming Mode

There are two programming modes: parallel and serial. The programming mode is selected by the state of the ALE and $\overline{\text{PSEN}}$ signals during power-on reset. Serial programming mode is selected with $\overline{\text{PSEN}}=0$ and ALE = 1. Parallel programming mode is selected with $\overline{\text{PSEN}}=1$ and ALE = 0 (see Figure 21). If they are both HIGH, the MSC1210 will operate in normal user mode. Both signals LOW is a reserved mode and is not defined. Programming mode is exited with a reset (BOR, WDT, software, or POR) and the normal mode selected.

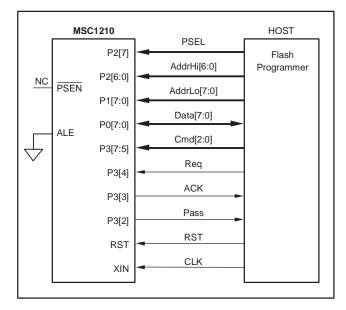


Figure 21. Parallel Programming Configuration

The MSC1210 is shipped with Flash Memory erased (all 1s). Parallel programming methods typically involve a third-party programmer. Serial programming methods typically involve in-system programming. UAM allows Flash Program and Data Memory programming. The actual code for Flash programming cannot execute from Flash. That code must execute from the Boot ROM, internal (von Neumann) RAM or external memory.

INTERRUPTS

The MSC1210 uses a three-priority interrupt system. As shown in Table 6, each interrupt source has an independent priority bit, flag, interrupt vector, and enable (except that nine interrupts share the Auxiliary Interrupt [AI] at the highest priority). In addition, interrupts can be globally enabled or disabled. The interrupt structure is compatible with the original 8051 family. All of the standard interrupts are available.

HARDWARE CONFIGURATION MEMORY

The 128 configuration bytes can only be written during the program mode. The bytes are accessed through SFR registers CADDR (SFR 93h) and CDATA (SFR 94h). Two of the configuration bytes control Flash partitioning and system control. If the security bit is set, these bits can not be changed except with a Mass Erase command that erases all of the Flash Memory including the 128 configuration bytes.

Table 6. Interrupt Summary

	INTER	RUPT				PRIORITY
INTERRUPT/EVENT	ADDR	NUM	PRIORITY	FLAG	ENABLE	CONTROL
DV _{DD} Low Voltage/HW Breakpoint	33h	6	HIGH	EDLVB (AIE.0) ⁽¹⁾ EBP (BPCON.0) ⁽¹⁾	EDLVB (AIE.0) ⁽¹⁾ EBP (BPCON.0) ⁽¹⁾	N/A
AV _{DD} Low Voltage	33h	6	0	EALV (AIE.1)(1)	EALV (AIE.1)(1)	N/A
SPI Receive	33h	6	0	ESPIR (AIE.2)(1)	ESPIR (AIE.2)(1)	N/A
SPI Transmit	33h	6	0	ESPIT (AIE.3)(1)	ESPIT (AIE.3)(1)	N/A
Milliseconds Timer	33h	6	0	EMSEC (AIE.4)(1)	EMSEC (AIE.4)(1)	N/A
ADC	33h	6	0	EADC (AIE.5)(1)	EADC (AIE.5) ⁽¹⁾	N/A
Summation Register	33h	6	0	ESUM (AIE.6)(1)	ESUM (AIE.6)(1)	N/A
Seconds Timer	33h	6	0	ESEC (AIE.7)(1)	ESEC (AIE.7)(1)	N/A
External Interrupt 0	03h	0	1	IE0 (TCON.1)(2)	EX0 (IE.0)(4)	PX0 (IP.0)
Timer 0 Overflow	0Bh	1	2	TF0 (TCON.5)(3)	ET1 (IE.1) ⁽⁴⁾	PT0 (IP.1)
External Interrupt 1	13h	2	3	IE1 (TCON.3)(2)	EX1 (IE.2)(4)	PX1 (IP.2)
Timer 1 Overflow	0Bh	3	4	TF1 (TCON.7)(3)	ET1 (IE.3)(4)	PT1 (IP.3)
Serial Port 0	23h	4	5	RI_0 (SCON0.0) TI_0 (SCON0.1)	ES0 (IE.4)(4)	PS0 (IP.4)
Timer 2 Overflow	2Bh	5	6	TF2 (T2CON.7)	ET2 (IE.5)(4)	PT2 (IP.5)
Serial Port 1	3Bh	7	7	RI_1 (SCON1.0) TI_1 (SCON1.1)	ES1 (IE.6) ⁽⁴⁾	PS1 (IP.6)
External Interrupt 2	43h	8	8	IE2 (EXIF.4)	EX2 (EIE.0)(4)	PX2 (EIP.0)
External Interrupt 3	4Bh	9	9	IE3 (EXIF.5)	EX3 (EIE.1)(4)	PX3 (EIP.1)
External Interrupt 4	53h	10	10	IE4 (EXIF.6)	EX4 (EIE.2)(4)	PX4 (EIP.2)
External Interrupt 5	5Bh	11	11	IE5 (EXIF.7)	EX5 (EIE.3)(4)	PX5 (EIP.3)
Watchdog	63h	12	12 LOW	WDTI (EICON.3)	EWDI (EIE.4) ⁽⁴⁾	PWDI (EIP.4)

⁽¹⁾ These interrupts set the AI flag (EICON.4) and are enabled by EAI (EICON.5).

⁽²⁾ If edge-triggered, cleared automatically by hardware when the service routine is vectored to. If level-triggered, the flag follows the state of the pin

⁽³⁾ Cleared automatically by hardware when interrupt vector occurs.

⁽⁴⁾ Globally enabled by EA (IE.7).

Hardware Configuration Register 0 (HCR0)—Accessed Using SFR Registers CADDR and CDATA.

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
CADDR 7Fh	EPMA	PML	RSL	EBR	EWDR	DFSEL2	DFSEL1	DFSEL0

To read this register during normal operation, refer to the register descriptions for CADDR and CDATA.

EPMA Enable Programming Memory Access (Security Bit).

bit 7 0: After reset in programming modes, Flash Memory can only be accessed in UAM until a mass erase is done.

1: Fully Accessible (default)

PML Program Memory Lock (PML has Priority Over RSL).

bit 6 0: Enable all Flash Programming modes in program mode, can be written in UAM.

1: Enable read-only for program mode; cannot be written in UAM (default).

RSL Reset Sector Lock. The reset sector can be used to provide another method of Flash Memory programming. This bit 5 will allow Program Memory updates without changing the jumpers for in-circuit code updates or program

development. The code in this boot sector would then provide the monitor and programming routines with the ability

to jump into the main Flash code when programming is finished.

0: Enable Reset Sector Writing

1: Enable Read-Only Mode for Reset Sector (4kB) (default)

EBR Enable Boot ROM. Boot ROM is 2kB of code located in ROM, not to be confused with the 4kB Boot Sector located

bit 4 in Flash Memory.

0: Disable Internal Boot ROM

1: Enable Internal Boot ROM (default)

EWDR Enable Watchdog Reset.

bit 3 0: Disable Watchdog Reset

1: Enable Watchdog Reset (default)

DFSEL Data Flash Memory Size (see Table 3).

bits 2-0 000: Reserved

001: 32kB, 16kB, 8kB, or 4kB Data Flash Memory

010: 16kB, 8kB, or 4kB Data Flash Memory

011: 8kB or 4kB Data Flash Memory

100: 4kB Data Flash Memory

101: 2kB Data Flash Memory

110: 1kB Data Flash Memory

111: No Data Flash Memory (default)

Hardware Configuration Register 1 (HCR1)

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
CADDR 7Eh	DBLSEL1	DBLSEL0	ABLSEL1	ABLSEL0	DAB	DDB	EGP0	EGP23

To read this register during normal operation, refer to the register descriptions for CADDR and CDATA.

DBLSEL Digital Brownout Level Select

bits 7–6 00: 4.5V

01: 4.2V 10: 2.7V

11: 2.5V (default)

ABLSEL Analog Brownout Level Select

bits 5-4 00: 4.5V

01: 4.2V 10: 2.7V

11: 2.5V (default)

DAB Disable Analog Power-Supply Brownout Reset

bit 3 0: Enable Analog Brownout Reset

1: Disable Analog Brownout Reset (default) (will not disable unless AV_{DD} > 2.0V)

DDB Disable Digital Power-Supply Brownout Reset

bit 2 0: Enable Digital Brownout Reset

1: Disable Digital Brownout Reset (default)

EGP0 Enable General-Purpose I/O for Port 0

bit 1 0: Port 0 is Used for External Memory, P3.6 and P3.7 Used for WR and RD.

1: Port 0 is Used as General-Purpose I/O (default)

EGP23 Enable General-Purpose I/O for Ports 2 and 3

bit 0 0: Port 2 is Used for External Memory, P3.6 and P3.7. Used for WR and RD.

1: Port 2 and Port3 are Used as General-Purpose I/O (default)

Configuration Memory Programming

Certain key functions such as Brownout Reset and Watchdog Timer are controlled by the hardware configuration bits. These bits are nonvolatile and can only be changed through serial and parallel programming. Other peripheral control and status functions, such as ADC configuration, timer setup, and Flash control, are controlled through the SFRs.

SFR Definitions (Boldface definitions indicate that the register is unique to the MSC1210Yx)

ADDRESS	REGISTER	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	RESET VALUES
80h	P0	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	FFh
81h	SP									07h
82h	DPL0									00h
83h	DPH0									00h
84h	DPL1									00h
85h	DPH1									00h
86h	DPS	0	0	0	0	0	0	0	SEL	00h
87h	PCON	SMOD	0	1	1	GF1	GF0	STOP	IDLE	30h
88h	TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00h
89h	TMOD		Tim	ner 1			Tin	ner 0		00h
		GATE	C/T	M1	MO	GATE	C/T	M1	MO	
8Ah	TL0									00h
8Bh	TL1									00h
8Ch	TH0									00h
8Dh	TH1									00h
8Eh	CKCON	0	0	T2M	T1M	ТОМ	MD2	MD1	MD0	01h
8Fh	MWS	0	0	0	0	0	0	0	MXWS	00h
90h	P1	P1.7 INT5/SCK	P1.6 INT4/MISO	P1.5 INT3/MOSI	P1.4 INT2/SS	P1.3 TXD1	P1.2 RXD1	P1.1 T2EX	P1.0 T2	FFh
91h	EXIF	IE5	IE4	IE3	IE2	1	0	0	0	08h
92h	MPAGE									00h
93h	CADDR									00h
94h	CDATA									00h
95h	MCON	BPSEL	0	0					RAMMAP	00h
96h			İ			İ		İ		00h
97h										
98h	SCON0	SM0_0	SM1_0	SM2_0	REN_0	TB8_0	RB8_0	TI_0	RI_0	00h
99h	SBUF0									00h
9Ah	SPICON	SCK2	SCK1	SCK0	0	ORDER	MSTR	СРНА	CPOL	00h
9Bh	SPIDATA		İ			İ		İ		00h
9Dh	SPITCON			CLK_EN	DRV_DLY	DRV_EN				00h
A0h	P2	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	FFh
A1h	PWMCON			PPOL	PWMSEL	SPDSEL	TPCNTL2	TPCNTL1	TPCNTL0	00h
A2h	PWMLOW TONELOW	PWM7 TDIV7	PWM6 TDIV6	PWM5 TDIV5	PWM4 TDIV4	PWM3 TDIV3	PWM2 TDIV2	PWM1 TDIV1	PWM0 TDIV0	00h
A3h	PWMHI TONEHI	PWM15 TDIV15	PWM14 TDIV14	PWM13 TDIV13	PWM12 TDIV12	PWM11 TDIV11	PWM10 TDIV10	PWM9 TDIV9	PWM8 TDIV8	00h
A4h										
A5h	PAI	0	0	0	0	PAI3	PAI2	PAI1	PAI0	00h
A6h	AIE	ESEC	ESUM	EADC	EMSEC	ESPIT	ESPIR	EALV	EDLVB	00h
A7h	AISTAT	SEC	SUM	ADC	MSEC	SPIT	SPIR	ALVD	DLVD	00h
A8h	IE	EA	ES1	ET2	ES0	ET1	EX1	ET0	EX0	00h
A9h	BPCON	ВР	0	0	0	0	0	PMSEL	EBP	00h
AAh	BPL									00h
ABh	ВРН		İ	İ		İ	İ	İ		00h
ACh	P0DDRL	P03H	P03L	P02H	P02L	P01H	P01L	P00H	P00L	00h
ADh	P0DDRH	P07H	P07L	P06H	P06L	P05H	P05L	P04H	P04L	00h

SFR Definitions (continued) (Boldface definitions indicate that the register is unique to the MSC1210Yx)

ADDRESS	REGISTER	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	RESET VALUES
AEh	P1DDRL	P13H	P13L	P12H	P12L	P11H	P11L	P10H	P10L	00h
AFh	P1DDRH	P17H	P17L	P16H	P16L	P15H	P15L	P14H	P14L	00h
B0h	P3	<u>P3.</u> 7 RD	<u>P3.</u> 6 WR	P3.5 T1	P3.4 T0	P3.3 INT1	P3.2 INT0	P3.1 TXD0	P3.0 RXD0	FFh
B1h	P2DDRL	P23H	P23L	P22H	P22L	P21H	P21L	P20H	P20L	00h
B2h	P2DDRH	P27H	P27L	P26H	P26L	P25H	P25L	P24H	P24L	00h
B3h	P3DDRL	P33H	P33L	P32H	P32L	P31H	P31L	P30H	P30L	00h
B4h	P3DDRH	P37H	P37L	P36H	P36L	P35H	P35L	P34H	P34L	00h
B5h										
B6h										
B7h										
B8h	IP	1	PS1	PT2	PS0	PT1	PX1	PT0	PX0	80h
B9h										
BAh										
BBh										
BCh										
BDh										
BEh										
BFh										
C0h	SCON1	SM0_1	SM1_1	SM2_1	REN_1	TB8_1	RB8_1	TI_1	RI_1	00h
C1h	SBUF1									00h
C2h										
C3h										
C4h										
C5h	EWU						EWUWDT	EWILEY4	FMILEVO	004
C6h C7h	EWO						EWOWDI	EWUEX1	EWUEX0	00h
C8h	T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	00h
C9h	120014	112	LXI Z	KOLK	TOLK	LALIVE	1112	0/12	OI /IKLZ	0011
CAh	RCAP2L									00h
CBh	RCAP2H									00h
CCh	TL2									00h
CDh	TH2									00h
CEh										
CFh										
D0h	PSW	CY	AC	F0	RS1	RS0	OV	F1	Р	00h
D1h	OCL								LSB	00h
D2h	ОСМ									00h
D3h	осн	MSB								00h
D4h	GCL								LSB	5Ah
D5h	GCM									ECh
D6h	GCH	MSB								5Fh
D7h	ADMUX	INP3	INP2	INP1	INP0	INN3	INN2	INN1	INN0	01h
D8h	EICON	SMOD1	1	EAI	AI	WDTI	0	0	0	40h
D9h	ADRESL								LSB	00h
DAh	ADRESM									00h

SFR Definitions (continued) (Boldface definitions indicate that the register is unique to the MSC1210Yx)

ADDRESS	REGISTER	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	RESET VALUES
DBh	ADRESH	MSB								00h
DCh	ADCON0	_	BOD	EVREF	VREFH	EBUF	PGA2	PGA1	PGA0	30h
DDh	ADCON1	OF_UF	POL	SM1	SM0	_	CAL2	CAL1	CAL0	0000_0000b
DEh	ADCON2	DR7	DR6	DR5	DR4	DR3	DR2	DR1	DR0	1Bh
DFh	ADCON3	0	0	0	0	0	DR10	DR9	DR8	06h
E0h	ACC									00h
E1h	SSCON	SSCON1	SSCON0	SCNT2	SCNT1	SCNT0	SHF2	SHF1	SHF0	00h
E2h	SUMR0									00h
E3h	SUMR1									00h
E4h	SUMR2									00h
E5h	SUMR3									00h
E6h	ODAC									00h
E7h	LVDCON	ALVDIS	ALVD2	ALVD1	ALVD0	DLVDIS	DLVD2	DLVD1	DLVD0	00h
E8h	EIE	1	1	1	EWDI	EX5	EX4	EX3	EX2	E0h
E9h	HWPC0	0	0	0	0	0	0	МЕМО	RY SIZE	0000_00xxb
EAh	HWPC1	0	0	0	0	0	0	0	0	00h
EBh	HDWVER									xxh
ECh	Reserved									00h
EDh	Reserved									00h
EEh	FMCON	0	PGERA	0	FRCM	0	BUSY	1	0	02h
EFh	FTCON	FER3	FER2	FER1	FER0	FWR3	FWR2	FWR1	FWR0	A5h
F0h	В	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0	00h
F1h	PDCON	0	0	0	PDPWM	PDADC	PDWDT	PDST	PDSPI	1Fh
F2h	PASEL	0	0	PSEN2	PSEN1	PSEN0	0	ALE1	ALE0	00h
F3h										
F4h										
F5h										
F6h	ACLK	0	FREQ6	FREQ5	FREQ4	FREQ3	FREQ2	FREQ1	FREQ0	03h
F7h	SRST	0	0	0	0	0	0	0	RSTREQ	00h
F8h	EIP	1	1	1	PWDI	PX5	PX4	PX3	PX2	E0h
F9h	SECINT	WRT	SECINT6	SECINT5	SECINT4	SECINT3	SECINT2	SECINT1	SECINT0	7Fh
FAh	MSINT	WRT	MSINT6	MSINT5	MSINT4	MSINT3	MSINT2	MSINT1	MSINT0	7Fh
FBh	USEC	0	0	0	FREQ4	FREQ3	FREQ2	FREQ1	FREQ0	03h
FCh	MSECL									9Fh
FDh	MSECH									0Fh
FEh	HMSEC									63h
FFh	WDTCON	EWDT	DWDT	RWDT	WDCNT4	WDCNT3	WDCNT2	WDCNT1	WDCNT0	00h

Port 0 (P0)

	7	6	5	4	3	2	1	0	Reset Value
SFR 80h	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	FFh

P0.7–0 bits 7–0

Port 0. This port functions as a multiplexed address/data bus during external memory access, and as a general-purpose I/O port when external memory access is not needed. During external memory cycles, this port will contain the LSB of the address when ALE is HIGH, and Data when ALE is LOW. When used as a general-purpose I/O, this port drive is selected by P0DDRL and P0DDRH (ACh, ADh). Whether Port 0 is used as general-purpose I/O or for external memory access is determined by the Flash Configuration Register (HCR1.1)

Stack Pointer (SP)

	7	6	5	4	3	2	1	0	Reset Value
SFR 81h	SP.7	SP.6	SP.5	SP.4	SP.3	SP.2	SP.1	SP.0	07h

SP.7–0 Stack Pointer. The stack pointer identifies the location where the stack will begin. The stack pointer is incremented before every PUSH or CALL operation and decremented after each POP or RET/RETI. This register defaults to 07h after reset.

Data Pointer Low 0 (DPL0)

	7	6	5	4	3	2	1	0	Reset Value
SFR 82h	DPL0.7	DPL0.6	DPL0.5	DPL0.4	DPL0.3	DPL0.2	DPL0.1	DPL0.0	00h

DPL0.7–0 Data Pointer Low 0. This register is the low byte of the standard 8051 16-bit data pointer. DPL0 and DPH0 are used to point to non-scratchpad data RAM. The current data pointer is selected by DPS (SFR 86h).

Data Pointer High 0 (DPH0)

	7	6	5	4	3	2	1	0	Reset Value
SFR 83h	DPH0.7	DPH0.6	DPH0.5	DPH0.4	DPH0.3	DPH0.2	DPH0.1	DPH0.0	00h

DPH0.7–0 Data Pointer High 0. This register is the high byte of the standard 8051 16-bit data pointer. DPL0 and DPH0 are used to point to non-scratchpad data RAM. The current data pointer is selected by DPS (SFR 86h).

Data Pointer Low 1 (DPL1)

	7	6	5	4	3	2	1	0	Reset Value
SFR 84h	DPL1.7	DPL1.6	DPL1.5	DPL1.4	DPL1.3	DPL1.2	DPL1.1	DPL1.0	00h

DPL1.7–0 Data Pointer Low 1. This register is the low byte of the auxiliary 16-bit data pointer. When the SEL bit (DPS.0, bits 7–0 SFR 86h) is set, DPL1 and DPH1 are used in place of DPL0 and DPH0 during DPTR operations.

Data Pointer High 1 (DPH1)

	7	6	5	4	3	2	1	0	Reset Value
SFR 85h	DPH1.7	DPH1.6	DPH1.5	DPH1.4	DPH1.3	DPH1.2	DPH1.1	DPH1.0	00h

DPH1.7-0 Data Pointer High. This register is the high byte of the auxiliary 16-bit data pointer. When the SEL bit (DPS.0, bits 7-0 SFR 86h) is set, DPL1 and DPH1 are used in place of DPL0 and DPH0 during DPTR operations.

Data Pointer Select (DPS)

	7	6	5	4	3	2	1	0	Reset Value
SFR 86h	0	0	0	0	0	0	0	SEL	00h

SEL Data Pointer Select. This bit selects the active data pointer.

bit 0 0: Instructions that use the DPTR will use DPL0 and DPH0.

1: Instructions that use the DPTR will use DPL1 and DPH1.

Power Control (PCON)

	7	6	5	4	3	2	1	0	Reset Value
SFR 87h	SMOD	0	1	1	GF1	GF0	STOP	IDLE	30h

SMOD Serial Port 0 Baud Rate Doubler Enable. The serial baud rate doubling function for Serial Port 0.

bit 7 0: Serial Port 0 baud rate will be a standard baud rate.

1: Serial Port 0 baud rate will be double that defined by baud rate generation equation when using Timer 1.

GF1 General-Purpose User Flag 1. This is a general-purpose flag for software control.

bit 3

GF₀ **General-Purpose User Flag 0.** This is a general-purpose flag for software control.

bit 2

STOP Stop Mode Select. Setting this bit will halt the oscillator and block external clocks. This bit will always read as a 0.

bit 1 Exit with RESET.

IDLE Idle Mode Select. Setting this bit will freeze the CPU, Timer 0, 1, and 2, and the USARTs; other peripherals remain bit 0

active. This bit will always be read as a 0. Exit with AI (A6h) and EWU (C6h) interrupts.

Timer/Counter Control (TCON)

	7	6	5	4	3	2	1	0	Reset Value
SFR 88h	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00h

Timer 1 Overflow Flag. This bit indicates when Timer 1 overflows its maximum count as defined by the current mode.

This bit can be cleared by software and is automatically cleared when the CPU vectors to the Timer 1 interrupt service routine.

0: No Timer 1 overflow has been detected.

1: Timer 1 has overflowed its maximum count.

TR1 Timer 1 Run Control. This bit enables/disables the operation of Timer 1. Halting this timer will preserve the current count bit 6 in TH1, TL1.

0: Timer is halted.

1: Timer is enabled.

Timer 0 Overflow Flag. This bit indicates when Timer 0 overflows its maximum count as defined by the current mode. This bit can be cleared by software and is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine.

0: No Timer 0 overflow has been detected.

1: Timer 0 has overflowed its maximum count.

TR0 Timer 0 Run Control. This bit enables/disables the operation of Timer 0. Halting this timer will preserve the current count in TH0, TL0.

0: Timer is halted.

1: Timer is enabled.

Interrupt 1 Edge Detect. This bit is set when an edge/level of the type defined by IT1 is detected. If IT1 = 1, this bit 3 will remain set until cleared in software or the start of the External Interrupt 1 service routine. If IT1 = 0, this bit will inversely reflect the state of the INT1 pin.

IT1 Interrupt 1 Type Select. This bit selects whether the INT1 pin will detect edge or level triggered interrupts.

bit 2 0: INT1 is level triggered.

1: INT1 is edge triggered.

IEO Interrupt 0 Edge Detect. This bit is set when an edge/level of the type defined by IT0 is detected. If IT0 = 1, this bit will remain set until cleared in software or the start of the External Interrupt 0 service routine. If IT0 = 0, this bit will inversely reflect the state of the INT0 pin.

Interrupt 0 Type Select. This bit selects whether the INTO pin will detect edge or level triggered interrupts.

bit 2 0: INTO is level triggered.

1: INTO is edge triggered.

Timer Mode Control (TMOD)

	7	6	5	4	3	2	1	0	
		TIMI	ER 1				Reset Value		
SFR 89h	GATE	C/T	M1	MO	GATE	C/T	M1	MO	00h

GATE Timer 1 Gate Control. This bit enables/disables the ability of Timer 1 to increment.

bit 7 0: Timer 1 will clock when TR1 = 1, regardless of the state of pin $\overline{INT1}$.

1: Timer 1 will clock only when TR1 = 1 and pin $\overline{INT1}$ = 1.

C/T Timer 1 Counter/Timer Select.

bit 6 0: Timer is incremented by internal clocks.

1: Timer is incremented by pulses on T1 pin when TR1 (TCON.6, SFR 88h) is 1.

M1, M0 Timer 1 Mode Select. These bits select the operating mode of Timer 1.

bits 5-4

M1	MO	MODE
0	0	Mode 0: 8-bit counter with 5-bit prescale.
0	1	Mode 1: 16 bits.
1	0	Mode 2: 8-bit counter with auto reload.
1	1	Mode 3: Timer 1 is halted, but holds its count.

GATE Timer 0 Gate Control. This bit enables/disables the ability of Timer 0 to increment.

bit 3 0: Timer 0 will clock when TR0 = 1, regardless of the state of pin $\overline{\text{INT0}}$ (software control).

1: Timer 0 will clock only when TR0 = 1 and pin $\overline{INT0}$ = 1 (hardware control).

C/T Timer 0 Counter/Timer Select.

bit 2 0: Timer is incremented by internal clocks.

1: Timer is incremented by pulses on pin T0 when TR0 (TCON.4, SFR 88h) is 1.

M1, M0 Timer 0 Mode Select. These bits select the operating mode of Timer 0.

bits 1-0

M1	MO	MODE
0	0	Mode 0: 8-bit counter with 5-bit prescale.
0	1	Mode 1: 16 bits.
1	0	Mode 2: 8-bit counter with auto reload.
1	1	Mode 3: Two 8-bit counters.

Timer 0 LSB (TL0)

	7	6	5	4	3	2	1	0	Reset Value
SFR 8Ah	TL0.7	TL0.6	TL0.5	TL0.4	TL0.3	TL0.2	TL0.1	TL0.0	00h

TL0.7–0 Timer 0 LSB. This register contains the least significant byte of Timer 0.

bits 7-0

Timer 1 LSB (TL1)

	7	6	5	4	3	2	1	0	Reset Value
SFR 8Bh	TL1.7	TL1.6	TL1.5	TL1.4	TL1.3	TL1.2	TL1.1	TL1.0	00h

TL1.7–0 Timer 1 LSB. This register contains the least significant byte of Timer 1.

bits 7-0

Timer 0 MSB (TH0)

		7	6	5	4	3	2	1	0	Reset Value
ſ	SFR 8Ch	TH0.7	TH0.6	TH0.5	TH0.4	TH0.3	TH0.2	TH0.1	TH0.0	00h

TH0.7–0 Timer 0 MSB. This register contains the most significant byte of Timer 0.

bits 7-0

Timer 1 MSB (TH1)

	7	6	5	4	3	2	1	0	Reset Value
SFR 8Dh	TH1.7	TH1.6	TH1.5	TH1.4	TH1.3	TH1.2	TH1.1	TH1.0	00h

TH1.7–0 Timer 1 MSB. This register contains the most significant byte of Timer 1.

bits 7-0

Clock Control (CKCON)

	7	6	5	4	3	2	1	0	Reset Value
SFR 8Eh	0	0	T2M	T1M	TOM	MD2	MD1	MD0	01h

T2MTimer 2 Clock Select. This bit controls the division of the system clock that drives Timer 2. This bit has no effect when the timer is in baud rate generator or clock output mode. Clearing this bit to 0 maintains 8051 compatibility. This bit has no effect on instruction cycle timing.

0: Timer 2 uses a divide-by-12 of the crystal frequency.

1: Timer 2 uses a divide-by-4 of the crystal frequency.

T1M Timer 1 Clock Select. This bit controls the division of the system clock that drives Timer 1. Clearing this bit to 0 maintains 8051 compatibility. This bit has no effect on instruction cycle timing.

0: Timer 1 uses a divide-by-12 of the crystal frequency.

1: Timer 1 uses a divide-by-4 of the crystal frequency.

Timer 0 Clock Select. This bit controls the division of the system clock that drives Timer 0. Clearing this bit to 0 maintains 8051 compatibility. This bit has no effect on instruction cycle timing.

0: Timer 0 uses a divide-by-12 of the crystal frequency.

1: Timer 0 uses a divide-by-4 of the crystal frequency.

MD2, MD1, MD0 bits 2–0

Stretch MOVX Select 2–0. These bits select the time by which external MOVX cycles are to be stretched. This allows slower memory or peripherals to be accessed without using ports or manual software intervention. The width of the \overline{RD} or \overline{WR} strobe will be stretched by the specified interval, which will be transparent to the software except for the increased time to execute the MOVX instruction. All internal MOVX instructions on devices containing MOVX SRAM are performed at the 2 instruction cycle rate.

MD2	MD1	MD0	STRETCH VALUE	MOVX DURATION	RD or WR STROBE WIDTH (SYS CLKs)	RD or WR STROBE WIDTH (μs) at 12MHz
0	0	0	0	2 Instruction Cycles	2	0.167
0	0	1	1	3 Instruction Cycles (default)	4	0.333
0	1	0	2	4 Instruction Cycles	8	0.667
0	1	1	3	5 Instruction Cycles	12	1.000
1	0	0	4	6 Instruction Cycles	16	1.333
1	0	1	5	7 Instruction Cycles	20	1.667
1	1	0	6	8 Instruction Cycles	24	2.000
1	1	1	7	9 Instruction Cycles	28	2.333

Memory Write Select (MWS)

SBAS203F - MARCH 2002 - REVISED NOVEMBER 2004

	7	6	5	4	3	2	1	0	Reset Value
SFR 8Fh	0	0	0	0	0	0	0	MXWS	00h

MXWS MOVX Write Select. This allows writing to the internal Flash program memory.

bit 0 0: No writes are allowed to the internal Flash program memory.

1: Writing is allowed to the internal Flash program memory, unless PML (HCR0) or RSL (HCR0) are on.

Port 1 (P1)

	7	6	5	4	3	2	1	0	Reset Value
SFR 90h	P1.7 INT5/SCK	P1.6 INT4/MISO	P1.5 INT3/MOSI	P1. <u>4</u> INT2/SS	P1.3 TXD1	P1.2 RXD1	P1.1 T2EX	P1.0 T2	FFh

P1.7-0 General-Purpose I/O Port 1. This register functions as a general-purpose I/O port. In addition, all the pins have an bits 7-0 alternative function listed below. Each of the functions is controlled by several other SFRs. The associated Port 1 latch bit must contain a logic '1' before the pin can be used in its alternate function capacity. To use the alternate function, set the appropriate mode in P1DDRL (SFR AEh), P1DDRH (SFR AFh).

INT5/SCK External Interrupt 5. A falling edge on this pin will cause an external interrupt 5 if enabled.

bit 7 SPI Clock. The master clock for SPI data transfers.

INT4/MISO **External Interrupt 4.** A rising edge on this pin will cause an external interrupt 4 if enabled.

bit 6 Master In Slave Out. For SPI data transfers, this pin receives data for the master and transmits data from the slave.

INT3/MOSI External Interrupt 3. A falling edge on this pin will cause an external interrupt 3 if enabled.

bit 5 Master Out Slave In. For SPI data transfers, this pin transmits master data and receives slave data.

INT2/SS External Interrupt 2. A rising edge on this pin will cause an external interrupt 2 if enabled.

bit 4 Slave Select. During SPI operation, this pin provides the select signal for the slave device but does not control the output drive of MISO.

TXD1 Serial Port 1 Transmit. This pin transmits the serial Port 1 data in serial port modes 1, 2, 3, and emits the synchrobit 3 nizing clock in serial port mode 0.

RXD1 Serial Port 1 Receive. This pin receives the serial Port 1 data in serial port modes 1, 2, 3, and is a bidirectional data bit 2 transfer pin in serial port mode 0.

T2EX Timer 2 Capture/Reload Trigger. A 1 to 0 transition on this pin will cause the value in the T2 registers to be bit 1 transferred into the capture registers, if enabled by EXEN2 (T2CON.3, SFR C8h). When in auto-reload mode, a 1 to 0 transition on this pin will reload the Timer 2 registers with the value in RCAP2L and RCAP2H if enabled by EXEN2 (T2CON.3, SFR C8h).

T2 Timer 2 External Input. A 1 to 0 transition on this pin will cause Timer 2 to increment.

bit 0

External Interrupt Flag (EXIF)

	7	6	5	4	3	2	1	0	Reset Value
SFR 91h	IE5	IE4	IE3	IE2	1	0	0	0	08h

External Interrupt 5 Flag. This bit will be set when a falling edge is detected on INT5. This bit must be cleared bit 7 manually by software. Setting this bit in software will cause an interrupt if enabled.

External Interrupt 4 Flag. This bit will be set when a rising edge is detected on INT4. This bit must be cleared bit 6 manually by software. Setting this bit in software will cause an interrupt if enabled.

External Interrupt 3 Flag. This bit will be set when a falling edge is detected on INT3. This bit must be cleared bit 5 manually by software. Setting this bit in software will cause an interrupt if enabled.

External Interrupt 2 Flag. This bit will be set when a rising edge is detected on INT2. This bit must be cleared bit 4 manually by software. Setting this bit in software will cause an interrupt if enabled.

Memory Page (MPAGE)

	7	6	5	4	3	2	1	0	Reset Value
SFR 92h									00h

MPAGE bits 7–0

The 8051 uses Port 2 for the upper 8 bits of the external data memory access by MOVX A, @Ri and MOVX @Ri, A instructions. The MSC1210 uses register MPAGE instead of Port 2. To access external data memory using the MOVX A, @Ri and MOVX @Ri, A instructions, the user should preload the upper byte of the address into MPAGE (versus preloading into P2 for the standard 8051).

Configuration Address Register (CADDR) (write-only)

	7	6	5	4	3	2	1	0	Reset Value
SFR 93h									00h

CADDR Configuration Address Register. This register supplies the address for reading bytes in the 128 bytes of Flash bits 7–0 Configuration memory. This is a write-only register.

CAUTION: If this register is written to while executing from Flash Memory, the CDATA register will be incorrect. The faddr_data_read routine in the Boot ROM can be used for this purpose.

Configuration Data Register (CDATA) (read-only)

	7	6	5	4	3	2	1	0	Reset Value
SFR 94h									00h

CDATA Configuration Data Register. This register will contain the data in the 128 bytes of Flash Configuration memory that bits 7–0 are located at the last written address in the CADDR register. This is a read-only register.

Memory Control (MCON)

	7	6	5	4	3	2	1	0	Reset Value
SFR 95h	BPSEL	0	0	_	_	_	_	RAMMAP	00h

BPSEL Breakpoint Address Selection

bit 7 Write: Select one of two Breakpoint registers: 0 or 1.

0: Select breakpoint register 0.1: Select breakpoint register 1.

Read: Provides the Breakpoint register that created the last interrupt: 0 or 1.

RAMMAP Memory Map 1kB extended SRAM.

bit 0 0: Address is: 0000h—03FFh (default) (Data Memory)

1: Address is 8400h—87FFh (Data and Program Memory)

Serial Port 0 Control (SCON0)

	7	6	5	4	3	2	1	0	Reset Value
SFR 98h	SM0_0	SM1_0	SM2_0	REN_0	TB8_0	RB8_0	TI_0	RI_0	00h

SM0-2 Serial Port 0 Mode. These bits control the mode of serial Port 0. Modes 1, 2, and 3 have 1 start and 1 stop bit in addition to the 8 or 9 data bits.

MODE	SM0	SM1	SM2	FUNCTION	LENGTH	PERIOD
0	0	0	0 1	Synchronous Synchronous	8 bits 8 bits	12 PCLK ⁽¹⁾ 4 PCLK ⁽¹⁾
1 ⁽²⁾ 1 ⁽²⁾	0	1 1	0 1	Asynchronous Valid Stop Required ⁽³⁾	10 bits 10 bits	Timer 1 or 2 Baud Rate Equation Timer 1 Baud Rate Equation
2	1	0	0	Asynchronous Asynchronous with Multiprocessor Communication (4)	11 bits 11 bits	64 p _{CLK} ⁽¹⁾ (SMOD = 0) 32 p _{CLK} ⁽¹⁾ (SMOD = 1) 64 p _{CLK} ⁽¹⁾ (SMOD = 0) 32 p _{CLK} ⁽¹⁾ (SMOD = 1)
3(2) 3(2)	1	1 1	0 1	Asynchronous Asynchronous with Multiprocessor Communication(4)	11 bits 11 bits	Timer 1 or 2 Baud Rate Equation Timer 1 or 2 Baud Rate Equation

- (1) p_{CLK} will be equal to t_{CLK}, except that p_{CLK} will stop for IDLE.
- (2) For modes 1 and 3, the selection of Timer 1 or 2 for baud rate is specified via the T2CON (C8h) register.
- (3) RI_0 will only be activated when a valid STOP is received.
- (4) RI_0 will not be activated if bit 9 = 0.

REN_0 Receive Enable. This bit enables/disables the serial Port 0 received shift register.

bit 4 0: Serial Port 0 reception disabled.

1: Serial Port 0 received enabled (modes 1, 2, and 3). Initiate synchronous reception (mode 0).

TB8_0 9th Transmission Bit State. This bit defines the state of the 9th transmission bit in serial Port 0 modes 2 and 3. bit 3

RB8_0 9th Received Bit State. This bit identifies the state of the 9th reception bit of received data in serial Port 0 modes bit 2 2 and 3. In serial port mode 1, when SM2_0 = 0, RB8_0 is the state of the stop bit. RB8_0 is not used in mode 0.

TI_0 Transmitter Interrupt Flag. This bit indicates that data in the serial Port 0 buffer has been completely shifted out. In serial port mode 0, TI_0 is set at the end of the 8th data bit. In all other modes, this bit is set at the end of the last data bit. This bit must be manually cleared by software.

RI_0 Receiver Interrupt Flag. This bit indicates that a byte of data has been received in the serial Port 0 buffer. In serial port mode 0, RI_0 is set at the end of the 8th bit. In serial port mode 1, RI_0 is set after the last sample of the incoming stop bit subject to the state of SM2_0. In modes 2 and 3, RI_0 is set after the last sample of RB8_0. This bit must be manually cleared by software.

Serial Data Buffer 0 (SBUF0)

	7	6	5	4	3	2	1	0	Reset Value
SFR 99h									00h

SBUF0 bits 7–0

Serial Data Buffer 0. Data for Serial Port 0 is read from or written to this location. The serial transmit and receive buffers are separate registers, but both are addressed at this location.

SPI Control (SPICON). Any change resets the SPI interface, counters, and pointers. PDCON controls which is enabled.

	7	6	5	4	3	2	1	0	Reset Value
SFR 9Ah	SCK2	SCK1	SCK0	0	ORDER	MSTR	CPHA	CPOL	00h

SCK

SCK Selection. Selection of t_{CLK} divider for generation of SCK in Master mode.

bits 7-5

SCK2	SCK1	SCK0	SCK PERIOD
0	0	0	t _{CLK} /2
0	0	1	t _{CLK} /4
0	1	0	t _{CLK} /8
0	1	1	t _{CLK} /16
1	0	0	t _{CLK} /32
1	0	1	t _{CLK} /64
1	1	0	t _{CLK} /128
1	1	1	t _{CLK} /256

ORDER Set Bit Order for Transmit and Receive.

bit 3 0: Most Significant Bits First

1: Least Significant Bits First

MSTR SPI Master Mode.

bit 2 0: Slave Mode

1: Master Mode

CPHA Serial Clock Phase Control.

bit 1 0: Valid data starting from half SCK period before the first edge of SCK

1: Valid data starting from the first edge of SCK

CPOL Serial Clock Polarity.

bit 0 0: SCK idle at logic LOW

1: SCK idle at logic HIGH

SPI Data Register (SPIDATA)

	7	6	5	4	3	2	1	0	Reset Value
SFR 9Bh									00h

SPIDATA bits 7–0

SPI Data Register. Data for SPI is read from or written to this location. The SPI transmit and receive buffers are separate registers, but both are addressed at this location. Read to clear the receive interrupt and write to clear the transmit interrupt.

SPI Transmit Control Register (SPITCON)

	7	6	5	4	3	2	1	0	Reset Value
SFR 9Dh			CLK_EN	DRV_DLY	DRV_EN				00h

CLK_EN SCK Driver Enable.

bit 50: Disable SCK Driver (Master Mode)1: Enable SCK Driver (Master Mode)

DRV_DLY Drive Delay. (Refer to DRV_EN bit)

bit 4 0: Drive output immediately

1: Drive output after current byte transfer

DRV_EN Drive Enable.

bit 3

	DRV_DLY	DRV_EN	MOSI or MISO OUTPUT CONTROL
Ì	0	0	Tristate immediately
	0	1	Drive immediately
	1	0	Tristate after the current byte transfer
	1	1	Drive after the current byte transfer

Port 2 (P2)

	7	6	5	4	3	2	1	0	Reset Value
SFR A0h									FFh

P2 Port 2. This port functions as an address bus during external memory access, and as a general-purpose I/O port.

During external memory cycles, this port will contain the MSB of the address. Whether Port 2 is used as general-purpose I/O or for external memory access is determined by the Flash Configuration Register (HCR1.0).

PWM Control (PWMCON)

	7	6	5	4	3	2	1	0	Reset Value
SFR A1h	_	_	PPOL	PWMSEL	SPDSEL	TPCNTL2	TPCNTL1	TPCNTL0	00h

PPOL Period Polarity. Specifies the starting level of the PWM pulse.

bit 5 0: ON Period. PWM Duty register programs the ON period.

1: OFF Period. PWM Duty register programs the OFF period.

PWMSEL PWM Register Select. Select which 16-bit register is accessed by PWMLOW/PWMHIGH.

bit 4 0: Period (must be 0 for TONE mode)

1: Duty

SPDSEL Speed Select.

bit 3 0: 1MHz (the USEC Clock)

1: SYSCLK

TPCNTL Tone Generator/Pulse Width Modulation Control.

TPCNTL.2	TPCNTL.1	TPCNTL.0	MODE
0	0	0	Disable (default)
0	0	1	PWM
0	1	1	TONE—Square
1	1	1	TONE—Staircase

Tone Low (TONELOW)/PWM Low (PWMLOW)

	7	6	5	4	3	2	1	0	Reset Value
SFR A2h	TDIV7	TDIV6	TDIV5	TDIV4	TDIV3	TDIV2	TDIV1	TDIV0	00h
SFR AZII	PWM7	PWM6	PWM5	PWM4	PWM3	PWM2	PWM1	PWM0	0011

TDIV7–0 Tone Divisor. The low order bits that define the half-time period. For staircase mode the output is high impedance bits 7–0 for the last 1/4 of this period.

PWMLOW Pulse Width Modulator Low Bits. These 8 bits are the least significant 8 bits of the PWM register. bits 7–0

Tone High (TONEHI)/PWM High (PWMHI)

		7	6	5	4	3	2	1	0	Reset Value
SFR A	3h	TDIV15 PWM15	TDIV14 PWM14	TDIV13 PWM13	TDIV12 PWM12	TDIV11 PWM11	TDIV10 PWM10	TDIV9 PWM9	TDIV8 PWM8	00h

TDIV15–8 Tone Divisor. The high order bits that define the half time period. For staircase mode the output is high impedance for the last 1/4 of this period.

PWMHI Pulse Width Modulator High Bits. These 8 bits are the high order bits of the PWM register. bits 7–0

Pending Auxiliary Interrupt (PAI)

	7	6	5	4	3	2	1	0	Reset Value
SFR A5h	_	_	_	_	PAI3	PAI2	PAI1	PAI0	00h

PAI Pending Auxiliary Interrupt Register. The results of this register can be used as an index to vector to the appropriate interrupt routine. All of these interrupts vector through address 0033h.

PAI3	PAI2	PAI1	PAI0	AUXILIARY INTERRUPT STATUS
0	0	0	0	No Pending Auxiliary IRQ
0	0	0	1	Digital Low Voltage IRQ Pending
0	0	1	0	Analog Low Voltage IRQ Pending
0	0	1	1	SPI Receive IRQ Pending.
0	1	0	0	SPI Transmit IRQ Pending.
0	1	0	1	One Millisecond System Timer IRQ Pending.
0	1	1	0	Analog-to-Digital Conversion IRQ Pending.
0	1	1	1	Accumulator IRQ Pending.
1	0	0	0	One Second System Timer IRQ Pending.

Auxiliary Interrupt Enable (AIE)

	7	6	5	4	3	2	1	0	Reset Value
SFR A6h	ESEC	ESUM	EADC	EMSEC	ESPIT	ESPIR	EALV	EDLVB	00h

Interrupts are enabled by EICON.4 (SFR D8H). The other interrupts are controlled by the IE and EIE registers.

ESEC Enable Seconds Timer Interrupt (lowest priority auxiliary interrupt).

bit 7 Write: Set mask bit for this interrupt 0 = masked, 1 = enabled.

Read: Current value of **Seconds Timer Interrupt** before masking.

ESUM Enable Summation Interrupt.

bit 6 Write: Set mask bit for this interrupt 0 = masked, 1 = enabled.

Read: Current value of **Summation Interrupt** before masking.

EADC Enable ADC Interrupt.

bit 5 Write: Set mask bit for this interrupt 0 = masked, 1 = enabled.

Read: Current value of ADC Interrupt before masking.

EMSEC Enable Millisecond System Timer Interrupt.

bit 4 Write: Set mask bit for this interrupt 0 = masked, 1 = enabled.

Read: Current value of Millisecond System Timer Interrupt before masking.

ESPIT Enable SPI Transmit Interrupt.

bit 3 Write: Set mask bit for this interrupt 0 = masked, 1 = enabled.

Read: Current value of SPI Transmit Interrupt before masking.

ESPIR Enable SPI Receive Interrupt.

bit 2 Write: Set mask bit for this interrupt 0 = masked, 1 = enabled.

Read: Current value of SPI Receive Interrupt before masking.

EALV Enable Analog Low Voltage Interrupt.

bit 1 Write: Set mask bit for this interrupt 0 = masked, 1 = enabled.

Read: Current value of Analog Low Voltage Interrupt before masking.

EDLVB Enable Digital Low Voltage or Breakpoint Interrupt (highest priority auxiliary interrupt).

bit 0 Write: Set mask bit for this interrupt 0 = masked, 1 = enabled.

Read: Current value of **Digital Low Voltage** or **Breakpoint Interrupt** before masking.

Auxiliary Interrupt Status Register (AISTAT)

	7	6	5	4	3	2	1	0	Reset Value
SFR A7h	SEC	SUM	ADC	MSEC	SPIT	SPIR	ALVD	DLVD	00h

SEC Second System Timer Interrupt Status Flag (lowest priority Al).

bit 7 0: SEC interrupt inactive or masked.

1: SEC Interrupt active. (It is set inactive by reading the SECINT register.)

SUM Summation Register Interrupt Status Flag.

bit 6 0: SUM interrupt inactive or masked.

1: SUM interrupt active. (It is set inactive by reading the lowest byte of the Summation register.)

ADC ADC Interrupt Status Flag.

bit 5 0: ADC interrupt inactive or masked (If active, it is set inactive by reading the lowest byte of the Data Output Register).

1: ADC interrupt active. (If active, no new data will be written to the Data Output Register.)

MSEC Millisecond System Timer Interrupt Status Flag.

bit 4 0: MSEC interrupt inactive or masked.

1: MSEC interrupt active. (It is set inactive by reading the MSINT register.)

SPIT SPI Transmit Interrupt Status Flag.

bit 3 0: SPI transmit interrupt inactive or masked.

1: SPI transmit interrupt active. (It is set inactive by writing to the SPIDATA register.)

SPIR SPI Receive Interrupt Status Flag.

bit 2 0: SPI receive interrupt inactive or masked.

1: SPI receive interrupt active. (It is set inactive by reading from the SPIDATA register.)

ALVD Analog Low Voltage Detect Interrupt Status Flag.

bit 1 0: ALVD interrupt inactive or masked.

1: ALVD interrupt active. (Interrupt stays active until the AV_{DD} voltage exceeds the threshold.)

DLVD Digital Low Voltage Detect or Breakpoint Interrupt Status Flag (highest priority AI).

bit 0 0: DLVD interrupt inactive or masked.

1: DLVD interrupt active. (Interrupt stays active until the DV_{DD} voltage exceeds the threshold or the Breakpoint is cleared.)

Interrupt Enable (IE)

	7	6	5	4	3	2	1	0	Reset Value
SFR A8h	EA	ES1	ET2	ES0	ET1	EX1	ET0	EX0	00h

EA Global Interrupt Enable. This bit controls the global masking of all interrupts except those in AIE (SFR A6h).

bit 7 0: Disable interrupt sources. This bit overrides individual interrupt mask settings for this register.

1: Enable all individual interrupt masks. Individual interrupts in this register will occur if enabled.

ES1 Enable Serial Port 1 Interrupt. This bit controls the masking of the serial Port 1 interrupt.

bit 6 0: Disable all serial Port 1 interrupts.

1: Enable interrupt requests generated by the RI_1 (SCON1.0, SFR C0h) or TI_1 (SCON1.1, SFR C0h) flags.

ET2 Enable Timer 2 Interrupt. This bit controls the masking of the Timer 2 interrupt.

bit 5 0: Disable all Timer 2 interrupts.

1: Enable interrupt requests generated by the TF2 flag (T2CON.7, SFR C8h).

ES0 Enable Serial port 0 interrupt. This bit controls the masking of the serial Port 0 interrupt.

bit 4 0: Disable all serial Port 0 interrupts.

1: Enable interrupt requests generated by the RI_0 (SCON0.0, SFR 98h) or TI_0 (SCON0.1, SFR 98h) flags.

ET1 Enable Timer 1 Interrupt. This bit controls the masking of the Timer 1 interrupt.

bit 3 0: Disable Timer 1 interrupt.

1: Enable interrupt requests generated by the TF1 flag (TCON.7, SFR 88h).

EX1 Enable External Interrupt 1. This bit controls the masking of external interrupt 1.

bit 2 0: Disable external interrupt 1.

1: Enable interrupt requests generated by the INT1 pin.

ETO Enable Timer 0 Interrupt. This bit controls the masking of the Timer 0 interrupt.

bit 1 0: Disable all Timer 0 interrupts.

1: Enable interrupt requests generated by the TF0 flag (TCON.5, SFR 88h).

EX0 Enable External Interrupt 0. This bit controls the masking of external interrupt 0.

bit 0 0: Disable external interrupt 0.

1: Enable interrupt requests generated by the INTO pin.

Breakpoint Control (BPCON)

	7	6	5	4	3	2	1	0	Reset Value
SFR A9h	BP	0	0	0	0	0	PMSEL	EBP	00h

Writing to register sets the breakpoint condition specified by MCON, BPL, and BPH.

BP Breakpoint Interrupt. This bit indicates that a break condition has been recognized by a hardware breakpoint register(s).

bit 7 Read: Status of Breakpoint Interrupt. Will indicate a breakpoint match for any of the breakpoint registers.

Write: 0: No effect.

1: Clear Breakpoint 1 for breakpoint register selected by MCON (SFR 95h).

PMSEL Program Memory Select. Write this bit to select memory for address breakpoints of register selected in MCON (SFR 95h).

0: Break on address in data memory.

1: Break on address in program memory.

EBP Enable Breakpoint. This bit enables this breakpoint register. Address of breakpoint register selected by

bit 0 MCON (SFR 95h).

0: Breakpoint disabled.

1: Breakpoint enabled.

Breakpoint Low (BPL) Address for BP Register Selected in MCON (95h)

	7	6	5	4	3	2	1	0	Reset Value
SFR AAh	BPL.7	BPL.6	BPL.5	BPL.4	BPL.3	BPL.2	BPL.1	BPL.0	00h

BPL.7–0 Breakpoint Low Address. The low 8 bits of the 16-bit breakpoint address.

bits 7-0

Breakpoint High Address (BPH) Address for BP Register Selected in MCON (95h)

	7	6	5	4	3	2	1	0	Reset Value
SFR ABh	BPH.7	BPH.6	BPH.5	BPH.4	BPH.3	BPH.2	BPH.1	BPH.0	00h

BPH.7-0 Breakpoint High Address. The high 8 bits of the 16-bit breakpoint address.

bits 7-0

Port 0 Data Direction Low Register (P0DDRL)

	7	6	5	4	3	2	1	0	Reset Value
SFR ACh	P03H	P03L	P02H	P02L	P01H	P01L	P00H	P00L	00h

P0.3 Port 0 Bit 3 Control.

bits 7-6

P03H	P03L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

P0.2 Port 0 Bit 2 Control.

bits 5-4

P02H	P02L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

P0.1 Port 0 Bit 1 Control.

bits 3-2

	P01H	P01L	
1	0	0	Standard 8051 (Pull-Up)
	0	1	CMOS Output
	1	0	Open Drain Output
	1	1	Input

P0.0 Port 0 Bit 0 Control.

bits 1-0

P00H	P00L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

NOTE: Port 0 also controlled by $\overline{\mathsf{EA}}$ and Memory Access Control HCR1.1.

Port 0 Data Direction High Register (P0DDRH)

	7	6	5	4	3	2	1	0	Reset Value
SFR ADh	P07H	P07L	P06H	P06L	P05H	P05L	P04H	P04L	00h

P0.7 Port 0 Bit 7 Control.

bits 7-6

P07H	P07L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

P0.6 Port 0 Bit 6 Control.

bits 5-4

P06H	P06L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

P0.5 Port 0 Bit 5 Control.

bits 3-2

P05H	P05L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

P0.4 Port 0 Bit 4 Control.

bits 1-0

P04H	P04L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

NOTE: Port 0 also controlled by $\overline{\mathsf{EA}}$ and Memory Access Control HCR1.1.

Port 1 Data Direction Low Register (P1DDRL)

	7	6	5	4	3	2	1	0	Reset Value
SFR AEh	P13H	P13L	P12H	P12L	P11H	P11L	P10H	P10L	00h

P1.3 Port 1 Bit 3 Control.

bits 7-6

P13H	P13L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

P1.2 Port 1 Bit 2 Control.

bits 5-4

P12H	P12L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

P1.1 Port 1 Bit 1 Control.

bits 3-2

P11H	P11L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

P1.0 Port 1 Bit 0 Control.

bits 1-0

P10H	P10L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

Port 1 Data Direction High Register (P1DDRH)

	7	6	5	4	3	2	1	0	Reset Value
SFR AFh	P17H	P17L	P16H	P16L	P15H	P15L	P14H	P14L	00h

P1.7 Port 1 Bit 7 Control.

bits 7-6

P17H	P17L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

P1.6 Port 1 Bit 6 Control.

bits 5-4

P16H	P16L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

P1.5 Port 1 Bit 5 Control.

bits 3-2

	P15H	P15L	
1	0	0	Standard 8051 (Pull-Up)
	0	1	CMOS Output
	1	0	Open Drain Output
	1	1	Input

P1.4 Port 1 Bit 4 Control.

bits 1-0

P14H	P14L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

Port 3 (P3)

	7	6	5	4	3	2	1	0	Reset Value
SFR B0h	<u>P3.7</u> RD	<u>P3.6</u> WR	P3.5 T1	P3.4 T0	P3.3 INT1	P3.2 INT0	P3.1 TXD0	P3.0 RXD0	FFh

P3.7–0General-Purpose I/O Port 3. This register functions as a general-purpose I/O port. In addition, all the pins have an alternative function listed below. Each of the functions is controlled by several other SFRs. The associated Port 3 latch bit must contain a logic '1' before the pin can be used in its alternate function capacity.

External Data Memory Read Strobe. This pin provides an active low read strobe to an external memory device.

If Port 0 or Port 2 is selected for external memory in the HCR1 register, this function will be enabled even if a '1' is not written to this latch bit. When external memory is selected, the settings of P3DRRH are ignored.

WR External Data Memory Write Strobe. This pin provides an active low write strobe to an external memory device.

If Port 0 or Port 2 is selected for external memory in the HCR1 register, this function will be enabled even if a '1' is not written to this latch bit. When external memory is selected, the settings of P3DRRH are ignored.

T1 Timer/Counter 1 External Input. A 1 to 0 transition on this pin will increment Timer 1.

bit 5

To Timer/Counter 0 External Input. A 1 to 0 transition on this pin will increment Timer 0.

bit 4

INT1 External Interrupt 1. A falling edge/low level on this pin will cause an external interrupt 1 if enabled.

bit 3

INTO External Interrupt 0. A falling edge/low level on this pin will cause an external interrupt 0 if enabled.

bit 2

TXD0 Serial Port 0 Transmit. This pin transmits the serial Port 0 data in serial port modes 1, 2, 3, and emits the synchronizing clock in serial port mode 0.

Serial Port 0 Receive. This pin receives the serial Port 0 data in serial port modes 1, 2, 3, and is a bidirectional data transfer pin in serial port mode 0.

Port 2 Data Direction Low Register (P2DDRL)

	7	6	5	4	3	2	1	0	Reset Value
SFR B1h	P23H	P23L	P22H	P22L	P21H	P21L	P20H	P20L	00h

P2.3 Port 2 Bit 3 Control.

bits 7-6

P23H	P23L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

P2.2 Port 2 Bit 2 Control.

bits 5-4

P22H	P22L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

P2.1 Port 2 Bit 1 Control.

bits 3-2

P21H	P21L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

P2.0 Port 2 Bit 0 Control.

bits 1-0

P20H		P20L	
0		0	Standard 8051 (Pull-Up)
0		1	CMOS Output
1	İ	0	Open Drain Output
1		1	Input

NOTE: Port 2 also controlled by $\overline{\mathsf{EA}}$ and Memory Access Control HCR1.1.

Port 2 Data Direction High Register (P2DDRH)

	7	6	5	4	3	2	1	0	Reset Value
SFR B2h	P27H	P27L	P26H	P26L	P25H	P25L	P24H	P24L	00h

P2.7 Port 2 Bit 7 Control.

bits 7-6

P27H	P27L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

P2.6 Port 2 Bit 6 Control.

bits 5-4

P26H	P26L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

P2.5 Port 2 Bit 5 Control.

bits 3-2

P25H	P25L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

P2.4 Port 2 Bit 4 Control.

bits 1-0

P24H	P24L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

NOTE: Port 2 also controlled by $\overline{\mathsf{EA}}$ and Memory Access Control HCR1.1.

Port 3 Data Direction Low Register (P3DDRL)

	7	6	5	4	3	2	1	0	Reset Value
SFR B3h	P33H	P33L	P32H	P32L	P31H	P31L	P30H	P30L	00h

P3.3 Port 3 Bit 3 Control.

bits 7-6

P33H	P33L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

P3.2 Port 3 Bit 2 Control.

bits 5-4

P32H	P32L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

P3.1 Port 3 Bit 1 Control.

bits 3-2

	P31H	P31L	
1	0	0	Standard 8051 (Pull-Up)
	0	1	CMOS Output
	1	0	Open Drain Output
	1	1	Input

P3.0 Port 3 Bit 0 Control.

bits 1-0

P30H	P30L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

Port 3 Data Direction High Register (P3DDRH)

Ī		7	6	5	4	3	2	1	0	Reset Value
ſ	SFR B4h	P37H	P37L	P36H	P36L	P35H	P35L	P34H	P34L	00h

P3.7 Port 3 Bit 7 Control.

bits 7-6

Ī	P37H	P37L	
Ī	0	0	Standard 8051 (Pull-Up)
	0	1	CMOS Output
	1	0	Open Drain Output
	1	1	Input

NOTE: Port 3.7 also controlled by $\overline{\mathsf{EA}}$ and Memory Access Control HCR1.1.

P3.6 Port 3 Bit 6 Control.

bits 5-4

P36H	P36L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

NOTE: Port 3.6 also controlled by $\overline{\sf EA}$ and Memory Access Control HCR1.1.

P3.5 Port 3 Bit 5 Control.

bits 3-2

P35H	P35L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

P3.4 Port 3 Bit 4 Control.

bits 1-0

P34H	P34L	
0	0	Standard 8051 (Pull-Up)
0	1	CMOS Output
1	0	Open Drain Output
1	1	Input

Interrupt Priority (IP)

	7	6	5	4	3	2	1	0	Reset Value
SFR B8h	1	PS1	PT2	PS0	PT1	PX1	PT0	PX0	80h

PS1 Serial Port 1 Interrupt. This bit controls the priority of the serial Port 1 interrupt.

bit 6 0 = Serial Port 1 priority is determined by the natural priority order.

1 = Serial Port 1 is a high priority interrupt.

PT2 Timer 2 Interrupt. This bit controls the priority of the Timer 2 interrupt.

bit 5 0 = Timer 2 priority is determined by the natural priority order.

1 = Timer 2 priority is a high priority interrupt.

PS0 Serial Port 0 Interrupt. This bit controls the priority of the serial Port 0 interrupt.

bit 4 0 = Serial Port 0 priority is determined by the natural priority order.

1 = Serial Port 0 is a high priority interrupt.

PT1 Timer 1 Interrupt. This bit controls the priority of the Timer 1 interrupt.

bit 3 0 = Timer 1 priority is determined by the natural priority order.

1 = Timer 1 priority is a high priority interrupt.

PX1 External Interrupt 1. This bit controls the priority of external interrupt 1.

bit 2 0 = External interrupt 1 priority is determined by the natural priority order.

1 = External interrupt 1 is a high priority interrupt.

PT0 Timer 0 Interrupt. This bit controls the priority of the Timer 0 interrupt.

bit 1 0 = Timer 0 priority is determined by the natural priority order.

1 = Timer 0 priority is a high priority interrupt.

PX0 External Interrupt 0. This bit controls the priority of external interrupt 0.

bit 0 0 = External interrupt 0 priority is determined by the natural priority order.

1 = External interrupt 0 is a high priority interrupt.

Serial Port 1 Control (SCON1)

	7	6	5	4	3	2	1	0	Reset Value
SFR C0h	SM0_1	SM1_1	SM2_1	REN_1	TB8_1	RB8_1	TI_1	RI_1	00h

SM0–2 Serial Port 1 Mode. These bits control the mode of serial Port 1. Modes 1, 2, and 3 have 1 start and 1 stop bit bits 7–5 in addition to the 8 or 9 data bits.

MODE	SM0	SM1	SM2	FUNCTION	LENGTH	PERIOD
0	0	0	0	Synchronous Synchronous	8 bits 8 bits	12 p _{CLK} ⁽¹⁾ 4 p _{CLK} ⁽¹⁾
1 1(2)	0	1	0	Asynchronous Valid Stop Required ⁽³⁾	10 bits 10 bits	Timer 1 Baud Rate Equation Timer 1 or Baud Rate Equation
2	1	0	0	Asynchronous Asynchronous with Multiprocessor Communication ⁽⁴⁾	11 bits 11 bits	64 p _{CLK} ⁽¹⁾ (SMOD = 0) 32 p _{CLK} ⁽¹⁾ (SMOD = 1) 64 p _{CLK} ⁽¹⁾ (SMOD = 0) 32 p _{CLK} ⁽¹⁾ (SMOD = 1)
3	1	1 1	0	Asynchronous Asynchronous with Multiprocessor Communication ⁽⁴⁾	11 bits 11 bits	Timer 1 Baud Rate Equation Timer 1 Baud Rate Equation

- (1) p_{CLK} will be equal to t_{CLK}, except that p_{CLK} will stop for IDLE.
- (2) For modes 1 and 3, the selection of Timer 1 or 2 for baud rate is specified via the T2CON (C8h) register.
- (3) RI_0 will only be activated when a valid STOP is received.
- (4) RI_0 will not be activated if bit 9 = 0.
- **REN_1** Receive Enable. This bit enables/disables the serial Port 1 received shift register.
- bit 4 0 = Serial Port 1 reception disabled.
 - 1 = Serial Port 1 received enabled (modes 1, 2, and 3). Initiate synchronous reception (mode 0).
- **TB8_1 9th Transmission Bit State.** This bit defines the state of the 9th transmission bit in serial Port 1 modes 2 and 3. bit 3
- **RB8_1 9th Received Bit State.** This bit identifies the state of the 9th reception bit of received data in serial Port 1 modes bit 2 and 3. In serial port mode 1, when SM2_1 = 0, RB8_1 is the state of the stop bit. RB8_1 is not used in mode 0.
- TI_1 Transmitter Interrupt Flag. This bit indicates that data in the serial Port 1 buffer has been completely shifted out.
 bit 1 In serial port mode 0, TI_1 is set at the end of the 8th data bit. In all other modes, this bit is set at the end of the last data bit. This bit must be cleared by software to transmit the next byte.
- RI_1 Receiver Interrupt Flag. This bit indicates that a byte of data has been received in the serial Port 1 buffer. In serial port mode 0, RI_1 is set at the end of the 8th bit. In serial port mode 1, RI_1 is set after the last sample of the incoming stop bit subject to the state of SM2_1. In modes 2 and 3, RI_1 is set after the last sample of RB8_1. This bit must be cleared by software to receive the next byte.

Serial Data Buffer 1 (SBUF1)

	7	6	5	4	3	2	1	0	Reset Value
SFR C1h									00h

SBUF1.7–0 Serial Data Buffer 1. Data for serial Port 1 is read from or written to this location. The serial transmit and receive bits 7–0 buffers are separate registers, but both are addressed at this location.

Enable Wake Up (EWU) Waking Up from IDLE Mode

	7	6	5	4	3	2	1	0	Reset Value
SFR C6h	_	_	_	I	_	EWUWDT	EWUEX1	EWUEX0	00h

Auxiliary interrupts will wake up from IDLE. They are enabled with EAI (EICON.5, SFR D8h).

EWUWDT Enable Wake Up Watchdog Timer. Wake using watchdog timer interrupt.

bit 2 0 = Don't wake up on watchdog timer interrupt.

1 = Wake up on watchdog timer interrupt.

EWUEX1 Enable Wake Up External 1. Wake using external interrupt source 1.

bit 1 0 = Don't wake up on external interrupt source 1.

1 = Wake up on external interrupt source 1.

EWUEX0 Enable Wake Up External 0. Wake using external interrupt source 0.

bit 0 0 = Don't wake up on external interrupt source 0.

1 = Wake up on external interrupt source 0.

Timer 2 Control (T2CON)

	7	6	5	4	3	2	1	0	Reset Value
SFR C8h	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	00h

Timer 2 Overflow Flag. This flag will be set when Timer 2 overflows from FFFFh. It must be cleared by software. bit 7

TF2 will only be set if RCLK and TCLK are both cleared to 0. Writing a 1 to TF2 forces a Timer 2 interrupt if enabled.

EXF2Timer 2 External Flag. A negative transition on the T2EX pin (P1.1) will cause this flag to be set based on the EXEN2 bit 6
(T2CON.3) bit. If set by a negative transition, this flag must be cleared to 0 by software. Setting this bit in software will force a timer interrupt if enabled.

RCLK Receive Clock Flag. This bit determines the serial Port 0 timebase when receiving data in serial modes 1 or 3.

bit 5 0 = Timer 1 overflow is used to determine receiver baud rate for USART0.

1 = Timer 2 overflow is used to determine receiver baud rate for USART0.

Setting this bit will force Timer 2 into baud rate generation mode. The timer will operate from a divide by 2 of the external clock.

TCLK Transmit Clock Flag. This bit determines the serial Port 0 timebase when transmitting data in serial modes 1 or 3.

bit 4 0 = Timer 1 overflow is used to determine transmitter baud rate for USARTO.

1 = Timer 2 overflow is used to determine transmitter baud rate for USART0.

Setting this bit will force Timer 2 into baud rate generation mode. The timer will operate from a divide by 2 of the external clock.

EXEN2 Timer 2 External Enable. This bit enables the capture/reload function on the T2EX pin if Timer 2 is not generating baud rates for the serial port.

0 = Timer 2 will ignore all external events at T2EX.

1 = Timer 2 will capture or reload a value if a negative transition is detected on the T2EX pin.

TR2 Timer 2 Run Control. This bit enables/disables the operation of Timer 2. Halting this timer will preserve the current bit 2 count in TH2, TL2.

0 = Timer 2 is halted.

1 = Timer 2 is enabled.

C/T2 Counter/Timer Select. This bit determines whether Timer 2 will function as a timer or counter. Independent of this bit, Timer 2 runs at 2 clocks per tick when used in baud rate generator mode.

0 = Timer 2 functions as a timer. The speed of Timer 2 is determined by the T2M bit (CKCON.5).

1 = Timer 2 will count negative transitions on the T2 pin (P1.0).

CP/RL2 Capture/Reload Select. This bit determines whether the capture or reload function is used for Timer 2. If either RCLK bit 0 or TCLK is set, this bit will not function and the timer will function in an auto-reload mode following each overflow.

0 = Auto-reloads will occur when Timer 2 overflows or a falling edge is detected on T2EX if EXEN2 = 1.

1 = Timer 2 captures will occur when a falling edge is detected on T2EX if EXEN2 = 1.

Timer 2 Capture LSB (RCAP2L)

	7	6	5	4	3	2	1	0	Reset Value
SFR CAh									00h

RCAP2L bits 7–0 Timer 2 Capture LSB. This register is used to capture the TL2 value when Timer 2 is configured in capture mode. RCAP2L is also used as the LSB of a 16-bit reload value when Timer 2 is configured in auto-reload mode.

Timer 2 Capture MSB (RCAP2H)

	7	6	5	4	3	2	1	0	Reset Value
SFR CBh									00h

RCAP2H Timer 2 Capture MSB. This register is used to capture the TH2 value when Timer 2 is configured in capture mode. BCAP2H is also used as the MSB of a 16-bit reload value when Timer 2 is configured in auto-reload mode.

Timer 2 LSB (TL2)

	7	6	5	4	3	2	1	0	Reset Value
SFR CCh									00h

TL2 Timer 2 LSB. This register contains the least significant byte of Timer 2. bits 7–0

Timer 2 MSB (TH2)

	7	6	5	4	3	2	1	0	Reset Value
SFR CDh									00h

TH2 Timer 2 MSB. This register contains the most significant byte of Timer 2. bits 7–0

Program Status Word (PSW)

	7	6	5	4	3	2	1	0	Reset Value
SFR D0h	CY	AC	F0	RS1	RS0	OV	F1	Р	00h

CYCarry Flag. This bit is set when the last arithmetic operation resulted in a carry (during addition) or a borrow (during subtraction). Otherwise, it is cleared to 0 by all arithmetic operations.

AC Auxiliary Carry Flag. This bit is set to 1 if the last arithmetic operation resulted in a carry into (during addition), or bit 6 a borrow (during subtraction) from the high-order nibble. Otherwise, it is cleared to 0 by all arithmetic operations.

F0 User Flag 0. This is a bit-addressable, general-purpose flag for software control. bit 5

RS1, RS0 Register Bank Select 1–0. These bits select which register bank is addressed during register accesses.

RS1	RS0	REGISTER BANK	ADDRESS
0	0	0	00h – 07h
0	1	1	08h – 0Fh
1	0	2	10h – 17h
1	1	3	18h – 1Fh

OVOverflow Flag. This bit is set to 1 if the last arithmetic operation resulted in a carry (addition), borrow (subtraction), or overflow (multiply or divide). Otherwise it is cleared to 0 by all arithmetic operations.

F1 User Flag 1. This is a bit-addressable, general-purpose flag for software control.

P Parity Flag. This bit is set to 1 if the modulo-2 sum of the 8 bits of the accumulator is 1 (odd parity); and cleared to bit 0 0 on even parity.

bit 1

bits 4-3

ADC Offset Calibration Register Low Byte (OCL)

	7	6	5	4	3	2	1	0	Reset Value
SFR D1h									00h

OCL ADC Offset Calibration Register Low Byte. This is the low byte of the 24-bit word that contains the ADC offset bits 7–0 calibration. A value that is written to this location will set the ADC offset calibration value.

ADC Offset Calibration Register Middle Byte (OCM)

	7	6	5	4	3	2	1	0	Reset Value
SFR D2h									00h

OCM ADC Offset Calibration Register Middle Byte. This is the middle byte of the 24-bit word that contains the ADC offset bits 7–0 calibration. A value that is written to this location will set the ADC offset calibration value.

ADC Offset Calibration Register High Byte (OCH)

	7	6	5	4	3	2	1	0	Reset Value
SFR D3h									00h

ADC Offset Calibration Register High Byte. This is the high byte of the 24-bit word that contains the ADC offset bits 7–0 calibration. A value that is written to this location will set the ADC offset calibration value.

ADC Gain Calibration Register Low Byte (GCL)

	7	6	5	4	3	2	1	0	Reset Value
SFR D4h									5Ah

GCL ADC Gain Calibration Register Low Byte. This is the low byte of the 24-bit word that contains the ADC gain bits 7–0 calibration. A value that is written to this location will set the ADC gain calibration value.

ADC Gain Calibration Register Middle Byte (GCM)

	7	6	5	4	3	2	1	0	Reset Value
SFR D5h									ECh

ADC Gain Calibration Register Middle Byte. This is the middle byte of the 24-bit word that contains the ADC gain calibration. A value that is written to this location will set the ADC gain calibration value.

ADC Gain Calibration Register High Byte (GCH)

	7	6	5	4	3	2	1	0	Reset Value
SFR D6h									5Fh

ADC Gain Calibration Register High Byte. This is the high byte of the 24-bit word that contains the ADC gain bits 7–0 calibration. A value that is written to this location will set the ADC gain calibration value.

ADC Multiplexer Register (ADMUX)

	7	6	5	4	3	2	1	0	Reset Value
SFR D7h	INP3	INP2	INP1	INP0	INN3	INN2	INN1	INN0	01h

INP3-0 Input Multiplexer Positive Channel. This selects the positive signal input.

bits 7-4

INP3	INP2	INP1	INP0	POSITIVE INPUT
0	0	0	0	AIN0 (default)
0	0	0	1	AIN1
0	0	1	0	AIN2
0	0	1	1	AIN3
0	1	0	0	AIN4
0	1	0	1	AIN5
0	1	1	0	AIN6
0	1	1	1	AIN7
1	0	0	0	AINCOM
1	1	1	1	Temperature Sensor (requires ADMUX = FFh)

INN3-0 Input Multiplexer Negative Channel. This selects the negative signal input.

bits 3-0

INN3	INN2	INN1	INN0	NEGATIVE INPUT
0	0	0	0	AIN0
0	0	0	1	AIN1 (default)
0	0	1	0	AIN2
0	0	1	1	AIN3
0	1	0	0	AIN4
0	1	0	1	AIN5
0	1	1	0	AIN6
0	1	1	1	AIN7
1	0	0	0	AINCOM
1	1	1	1	Temperature Sensor (requires ADMUX = FFh)

bit 3

SBAS203F - MARCH 2002 - REVISED NOVEMBER 2004

Enable Interrupt Control (EICON)

	7	6	5	4	3	2	1	0	Reset Value
SFR D8h	SMOD1	1	EAI	Al	WDTI	0	0	0	40h

SMOD1 Serial Port 1 Mode. When this bit is set the serial baud rate for Port 1 will be doubled.

bit 7 0 = Standard baud rate for Port 1 (default).

1 = Double baud rate for Port 1.

EAI Enable Auxiliary Interrupt. The Auxiliary Interrupt accesses nine different interrupts which are masked and

bit 5 identified by SFR registers PAI (SFR A5h), AIE (SFR A6h), and AISTAT (SFR A7h).

0 = Auxiliary Interrupt disabled (default).

1 = Auxiliary Interrupt enabled.

ΑI Auxiliary Interrupt Flag. All must be cleared by software before exiting the interrupt service routine, after the source bit 4 of the interrupt is cleared. Otherwise, the interrupt occurs again. Setting AI in software generates an Auxiliary Interrupt, if enabled.

0 = No Auxiliary Interrupt detected (default).

1 = Auxiliary Interrupt detected.

WDTI Watchdog Timer Interrupt Flag. WDTI must be cleared by software before exiting the interrupt service routine.

> Otherwise, the interrupt will occur again. Setting WDTI in software generates a watchdog time interrupt, if enabled. The Watchdog timer can generate an interrupt or reset. The interrupt is available only if the reset action is disabled in HCR0.

0 = No Watchdog Timer Interrupt detected (default).

1 = Watchdog Timer Interrupt detected.

ADC Results Register Low Byte (ADRESL)

	7	6	5	4	3	2	1	0	Reset Value
SFR D9h									00h

ADRESL The ADC Results Low Byte. This is the low byte of the 24-bit word that contains the ADC converter results.

bits 7-0 Reading from this register clears the ADC interrupt.

ADC Results Register Middle Byte (ADRESM)

	7	6	5	4	3	2	1	0	Reset Value
SFR DAh									00h

ADRESM The ADC Results Middle Byte. This is the middle byte of the 24-bit word that contains the ADC converter results. bits 7-0

ADC Results Register High Byte (ADRESH)

	7	6	5	4	3	2	1	0	Reset Value
SFR DBh									00h

ADRESH The ADC Results High Byte. This is the high byte of the 24-bit word that contains the ADC converter results. bits 7-0

ADC Control Register 0 (ADCON0)

	7	6	5	4	3	2	1	0	Reset Value
SFR DCh		BOD	EVREF	VREFH	EBUF	PGA2	PGA1	PGA0	30h

BOD bit 6 **Burnout Detect.** When enabled this connects a positive current source to the positive channel and a negative current source to the negative channel. If the channel is open circuit then the ADC results will be full-scale.

0 = Burnout Current Sources Off (default).

1 = Burnout Current Sources On.

EVREF bit 5

Enable Internal Voltage Reference. If the internal voltage reference is not used, it should be turned off to save power and reduce noise.

0 = Internal Voltage Reference Off.

1 = Internal Voltage Reference On (default). Note that REFIN- must be connected to AGND.

VREFH

Voltage Reference High Select. The internal voltage reference can be selected to be 2.5V or 1.25V.

bit 4 0 =

0 = REFOUT is 1.25V.

1 = REFOUT is 2.5V (default).

EBUF bit 3

Enable Buffer. Enable the input buffer to provide higher input impedance but limits the input voltage range and dissipates more power.

0 = Buffer disabled (default).

1 = Buffer enabled.

PGA2-0

Programmable Gain Amplifier. Sets the gain for the PGA from 1 to 128.

PGA2	PGA1	PGA0	GAIN
0	0	0	1 (default)
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

ADC Control Register 1 (ADCON1)

	7	6	5	4	3	2	1	0	Reset Value
SFR DDh	OF_UF	POL	SM1	SM0	_	CAL2	CAL1	CAL0	0000 0000b

OF_UF bit 7

Overflow/Underflow. If this bit is set, the data in the summation register is invalid. Either an overflow or underflow occurred. The bit is cleared by writing a '0' to it.

POL

Polarity. Polarity of the ADC result and Summation register.

bit 6

0 = Bipolar.

1 = Unipolar. The LSB size is 1/2 the size of bipolar (twice the resolution).

POL	ANALOG INPUT	DIGITAL OUTPUT		
	+FSR	0x7FFFFF		
0	ZERO	0x000000		
	-FSR	0x800000		
	+FSR	0xFFFFFF		
1	ZERO	0x000000		
	-FSR	0x000000		

SM1-0

Settling Mode. Selects the type of filter or auto select which defines the digital filter settling characteristics.

bits 5-4

SM1	SM0	SETTLING MODE
0	0	Auto
0	1	Fast Settling Filter
1	0	Sinc ² Filter
1	1	Sinc ³ Filter

CAL2-0 Calibration Mode Control Bits.

bits 2-0

CAL2	CAL1	CAL0	CALIBRATION MODE
0	0	0	No Calibration (default)
0	0	1	Self-Calibration, Offset and Gain
0	1	0	Self-Calibration, Offset only
0	1	1	Self-Calibration, Gain only
1	0	0	System Calibration, Offset only (requires external connection)
1	0	1	System Calibration, Gain only (requires external connection)
1	1	0	Reserved
1	1	1	Reserved

NOTE: Read Value—000b.

ADC Control Register 2 (ADCON2)

	7	6	5	4	3	2	1	0	Reset Value
SFR DEh	DR7	DR6	DR5	DR4	DR3	DR2	DR1	DR0	1Bh

DR7-0 Decir

Decimation Ratio LSB.

bits 7-0

ADC Control Register 3 (ADCON3)

	7	6	5	4	3	2	1	0	Reset Value
SFR DDh	_	1	1	1	-	DR10	DR9	DR8	06h

DR10-8 Decimation Ratio Most Significant 3 Bits. The output data rate = (ACLK + 1)/64/Decimation Ratio.

Accumulator (A or ACC)

	7	6	5	4	3	2	1	0	Reset Value
SFR DDh	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0	00h

ACC.7-0 Accumulator. This register serves as the accumulator for arithmetic and logic operations.

bits 7-0

Summation/Shifter Control (SSCON)

	7	6	5	4	3	2	1	0	Reset Value
SFR DDh	SSCON1	SSCON0	SCNT2	SCNT1	SCNT0	SHF2	SHF1	SHF0	00h

The Summation register is powered down when the ADC is powered down. If all zeroes are written to this register the 32-bit SUMR3–0 registers will be cleared. The Summation registers will do sign extend if Bipolar is selected in ADCON1.

SSCON1-0 Summation/Shift Count.

bits 7-6

SOURCE	SSCON1	SSCON0	MODE
CPU	0	0	Values written to the SUM registers are accumulated when the SUMR0 value is written (sum/shift ignored)
ADC	0	1	Summation register Enabled. Source is ADC, summation count is working.
CPU	1	0	Shift Enabled. Summation register is shifted by SHF Count bits. It takes four system clocks to execute.
ADC	1	1	Accumulate and Shift Enable. Values are accumulated for SUM Count times and then shifted by SHF Count.

SCNT2-0 Summation Count. When the summation is complete an interrupt will be generated unless masked. Reading the SUMR0 register clears the interrupt.

SCNT2	SCNT1	SCNT0	SUMMATION COUNT
0	0	0	2
0	0	1	4
0	1	0	8
0	1	1	16
1	0	0	32
1	0	1	64
1	1	0	128
1	1	1	256

SHF2-0 Shift Count.

SHF2	SHF1	SHF0	SHIFT	DIVIDE
0	0	0	1	2
0	0	1	2	4
0	1	0	3	8
0	1	1	4	16
1	0	0	5	32
1	0	1	6	64
1	1	0	7	128
1	1	1	8	256

Summation Register 0 (SUMR0)

	7	6	5	4	3	2	1	0	Reset Value
SFR E2h									00h

SUMR0 Summation Register 0. This is the least significant byte of the 32-bit summation register or bits 0 to 7.

bits 7–0 Write: Will cause values in SUMR3–0 to be added to the summation register.

Read: Will clear the Summation Count Interrupt.

Summation Register 1 (SUMR1)

	7	6	5	4	3	2	1	0	Reset Value
SFR E3h									00h

SUMR1 Summation Register 1. This is the most significant byte of the lowest 16 bits of the summation register or bits 8–15. bits 7–0

Summation Register 2 (SUMR2)

	7	6	5	4	3	2	1	0	Reset Value
SFR E4h									00h

SUMR2 Summation Register 2. This is the most significant byte of the lowest 24 bits of the summation register or bits 16–23. bits 7–0

Summation Register 3 (SUMR3)

	7	6	5	4	3	2	1	0	Reset Value
SFR E5h									00h

SUMR3 Summation Register 3. This is the most significant byte of the 32-bit summation register or bits 24–31. bits 7–0

Offset DAC Register (ODAC)

	7	6	5	4	3	2	1	0	Reset Value
SFR E6h									00h

ODAC
Offset DAC Register. This register will shift the input by up to half of the ADC full-scale input range. The offset DAC value is summed with the ADC input prior to conversion. Writing 00h or 80h to ODAC turns off the offset DAC.
bit 7
Offset DAC Sign bit.

Offset DAC Sign bit.

0 = Positive

1 = Negative

bit 6–0 Offset = $\frac{-V_{REF}}{2 \cdot PGA} \cdot \left(\frac{ODAC[6:0]}{127}\right) \cdot (-1)^{bit7}$

NOTE: ODAC cannot be used to offset the input so that the buffer can be used for AGND signals.

Low Voltage Detect Control (LVDCON)

	7	6	5	4	3	2	1	0	Reset Value
SFR E7h	ALVDIS	ALVD2	ALVD1	ALVD0	DLVDIS	DLVD2	DLVD1	DLVD0	00h

ALVDIS Analog Low Voltage Detect Disable.

bit 7 0 = Enable Detection of Low Analog Supply Voltage

1 = Disable Detection of Low Analog Supply Voltage

ALVD2-0 Analog Voltage Detection Level.

bits 6-4

ALVD2	ALVD1	ALVD0	VOLTAGE LEVEL
0	0	0	AV _{DD} 2.7V (default)
0	0	1	AV _{DD} 3.0V
0	1	0	AV _{DD} 3.3V
0	1	1	AV _{DD} 4.0V
1	0	0	AV _{DD} 4.2V
1	0	1	AV _{DD} 4.5V
1	1	0	AV _{DD} 4.7V
1	1	1	External Voltage AIN7 compared to
			1.2V

DLVDIS Digital Low Voltage Detect Disable.

bit 3 0 = Enable Detection of Low Digital Supply Voltage

1 = Disable Detection of Low Digital Supply Voltage

DLVD2-0 Digital Voltage Detection Level.

DLVD2	DLVD1	DLVD0	VOLTAGE LEVEL
0	0	0	DV _{DD} 2.7V (default)
0	0	1	DV _{DD} 3.0V
0	1	0	DV _{DD} 3.3V
0	1	1	DV _{DD} 4.0V
1	0	0	DV _{DD} 4.2V
1	0	1	DV _{DD} 4.5V
1	1	0	DV _{DD} 4.7V
1	1	1	External Voltage AIN6 compared to
			1.2V

Extended Interrupt Enable (EIE)

	7	6	5	4	3	2	1	0	Reset Value
SFR E8h	1	1	1	EWDI	EX5	EX4	EX3	EX2	E0h

EWDI Enable Watchdog Interrupt. This bit enables/disables the watchdog interrupt. The Watchdog timer is enabled by bit 4 (SFR FFh) and PDCON (SFR F1h) registers.

(SFR FFh) and PDCON (SFR F1h) registers. 0 = Disable the Watchdog Interrupt

1 = Enable Interrupt Request Generated by the Watchdog Timer

EX5 External Interrupt 5 Enable. This bit enables/disables external interrupt 5.

bit 3 0 = Disable External Interrupt 5 1 = Enable External Interrupt 5

EX4 External Interrupt 4 Enable. This bit enables/disables external interrupt 4.

bit 2 0 = Disable External Interrupt 4 1 = Enable External Interrupt 4

EX3 External Interrupt 3 Enable. This bit enables/disables external interrupt 3.

bit 1 0 = Disable External Interrupt 3 1 = Enable External Interrupt 3

EX2 External Interrupt 2 Enable. This bit enables/disables external interrupt 2.

bit 0 0 = Disable External Interrupt 2 1 = Enable External Interrupt 2

Hardware Product Code Register 0 (HWPC0) (read-only)

	7	6	5	4	3	2	1	0	Reset Value
SFR E9h	0	0	0	0	0	0	MEMOF	RY SIZE	0000_00xxb

HWPC1.7-0 Hardware Product Code LSB. Read-only.

bits 7-0

	MORY IZE	MODEL	FLASH MEMORY
<u> </u>		WODEL	III ZIII OI (1
0	0	MSC1210Y2	4kB
0	1	MSC1210Y3	8kB
1	0	MSC1210Y4	16kB
1	1	MSC1210Y5	32kB

Hardware Product Code Register 1 (HWPC1) (read-only)

	7	6	5	4	3	2	1	0	Reset Value
SFR EAh	0	0	0	0	0	0	0	0	00h

HWPC1.7-0 Hardware Product Code MSB. Read-only.

bits 7-0

Hardware Version Register (HDWVER)

	7	6	5	4	3	2	1	0	Reset Value
SFR EBh									

Flash Memory Control (FMCON)

	7	6	5	4	3	2	1	0	Reset Value
SFR EEh	0	PGERA	0	FRCM	0	BUSY	1	0	02h

PGERA Page Erase.

bit 6 0 = MOVX to Flash will perform a byte write operation

1 = MOVX to Flash will perform a page erase operation

FRCM Frequency Control Mode.

bit 4 0 = Bypass (default)

1 = Use Delay Line. Saves power when reading Flash (recommended)

BUSY Write/Erase BUSY Signal.

bit 2 0 = Idle or Available

1 = Busy

Flash Memory Timing Control Register (FTCON)

	7	6	5	4	3	2	1	0	Reset Value
SFR EFh	FER3	FER2	FER1	FER0	FWR3	FWR2	FWR1	FWR0	A5h

Refer to Flash Timing Characteristics.

FER3–0 Set Erase. Flash Erase Time = $(1 + FER) \cdot (MSEC + 1) \cdot t_{CLK}$.

bits 7–4 A minimum of 10ms is needed for industrial temperature range.

A minimum of 4ms is needed for commercial temperature range.

FWR3-0 Set Write. Flash Write Time = $(1 + FWR) \cdot (USEC + 1) \cdot 5 \cdot t_{CLK}$.

bits 3–0 Write time should be 30–40µs.

B Register (B)

	7	6	5	4	3	2	1	0	Reset Value
SFR F0h	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0	00h

B.7–0 B Register. This register serves as a second accumulator for certain arithmetic operations.

bits 7-0

Power-Down Control Register (PDCON)

	7	6	5	4	3	2	1	0	Reset Value
SFR F1h	0	0	0	PDPWM	PDADC	PDWDT	PDST	PDSPI	1Fh

Turning peripheral modules off puts the MSC1210 in the lowest power mode.

PDPWM Pulse Width Module Control.

bit 4 0 = PWM On

1 = PWM Power Down

PDADC ADC Control. bit 3 0 = ADC On

1 = ADC, V_{REF}, Summation registers, and Analog Brownout are powered down. Analog current = 0.

PDWDT Watchdog Timer Control.

bit 2 0 = Watchdog Timer On

1 = Watchdog Timer Power Down

PDST System Timer Control. bit 1 0 = System Timer On

1 = System Timer Power Down

PDSPI SPI System Control. bit 0 0 = SPI System On

1 = SPI System Power Down

PSEN/ALE Select (PASEL)

	7	6	5	4	3	2	1	0	Reset Value
SFR F2h	0	0	PSEN2	PSEN1	PSEN0	0	ALE1	ALE0	00h

PSEN2-0 PSEN Mode Select.

bits 5-3

PSEN2	PSEN1	PSEN0	
0	0	Х	PSEN
0	1	х	CLK
1	0	х	ADC MODCLK
1	1	0	LOW
1	1	1	HIGH

ALE1-0 ALE Mode Select.

bits 1-0

ALE1	ALE0	
0	Х	ALE
1	0	LOW
1	1	HIGH

Analog Clock (ACLK)

	7	6	5	4	3	2	1	0	Reset Value
SFR F6h	0	FREQ6	FREQ5	FREQ4	FREQ3	FREQ2	FREQ1	FREQ0	03h

FREQ6-0 Clock Frequency - 1. This value + 1 divides the system clock to create the ADC clock.

bit 6–0 ACLK frequency = $\frac{f_{CLK}}{FREQ + 1}$

$$f_{MOD} = \frac{f_{CLK}}{(ACLK + 1) \cdot 64}$$

$$Data Rate = \frac{f_{MOD}}{Decimation}$$

System Reset Register (SRST)

	7	6	5	4	3	2	1	0	Reset Value
SFR F7h	0	0	0	0	0	0	0	RSTREQ	00h

RSTREQ Reset Request. Setting this bit to 1 and then clearing to 0 will generate a system reset.

bit 0

Extended Interrupt Priority (EIP)

	7	6	5	4	3	2	1	0	Reset Value
SFR F8h	1	1	1	PWDI	PX5	PX4	PX3	PX2	E0h

PWDI Watchdog Interrupt Priority. This bit controls the priority of the watchdog interrupt.

bit 4 0 =The watchdog interrupt is low priority.

1 = The watchdog interrupt is high priority.

PX5 External Interrupt 5 Priority. This bit controls the priority of external interrupt 5.

bit 3 0 = External interrupt 5 is low priority.

1 = External interrupt 5 is high priority.

PX4 External Interrupt 4 Priority. This bit controls the priority of external interrupt 4.

bit 2 0 = External interrupt 4 is low priority.

1 = External interrupt 4 is high priority.

PX3 External Interrupt 3 Priority. This bit controls the priority of external interrupt 3.

bit 1 0 = External interrupt 3 is low priority.

1 = External interrupt 3 is high priority.

PX2 External Interrupt 2 Priority. This bit controls the priority of external interrupt 2.

bit 0 0 = External interrupt 2 is low priority.

1 = External interrupt 2 is high priority.

Seconds Timer Interrupt (SECINT)

	7	6	5	4	3	2	1	0	Reset Value
SFR F9h	WRT	SECINT6	SECINT5	SECINT4	SECINT3	SECINT2	SECINT1	SECINT0	7Fh

This system clock is divided by the value of the 16-bit register MSECH:MSECL. Then, the 1ms timer tick is divided by the register HMSEC that provides the 100ms signal used by this seconds timer. Therefore, the seconds timer can generate an interrupt that occurs from 100ms to 12.8 seconds. Reading this register clears the Seconds Interrupt. This Interrupt can be monitored in the AIE register.

WRT Write Control. Determines whether to write the value immediately or wait until the current count is finished.

bit 7 Read = 0.

0 = Delay Write Operation. The SEC value is loaded when the current count expires.

1 = Write Immediately. The counter is loaded once the CPU completes the write operation.

SECINT6-0 Seconds Count. Normal operation uses 100ms as the clock interval, and would equal: (SEC + 1)/10 seconds.

bits 6-0 Seconds Interrupt = (1 + SEC) • (HMSEC + 1) • (MSEC + 1) • t_{CLK}

Milliseconds Interrupt (MSINT)

	7	6	5	4	3	2	1	0	Reset Value
SFR FAh	WRT	MSINT6	MSINT5	MSINT4	MSINT3	MSINT2	MSINT1	MSINT0	7Fh

The clock used for this timer is the 1ms clock, which results from dividing the system clock by the values in registers MSECH:MSECL. Reading this register clears the interrupt.

WRT Write Control. Determines whether to write the value immediately or wait until the current count is finished.

bit 7 Read = 0.

0 = Delay Write Operation. The MSINT value is loaded when the current count expires.

1 = Write Immediately. The MSINT counter is loaded once the CPU completes the write operation.

MSINT6-0 Seconds Count. Normal operation would use 1ms as the clock interval.

bits 6–0 MS Interrupt Interval = (1 + MSINT) • (MSEC + 1) • t_{CLK}

One Microsecond Register (USEC)

	7	6	5	4	3	2	1	0	Reset Value
SFR FBh	0	0	0	FREQ4	FREQ3	FREQ2	FREQ1	FREQ0	03h

FREQ4–0 Clock Frequency – 1. This value + 1 divides the system clock to create a 1μs clock.

bits 4–0 USEC = CLK/(FREQ + 1). This clock is used to set Flash write time. See FTCON (SFR EFh).

One Millisecond Low Register (MSECL)

	7	6	5	4	3	2	1	0	Reset Value
SFR FCh	MSECL7	MSECL6	MSECL5	MSECL4	MSECL3	MSECL2	MSECL1	MSECL0	9Fh

MSECL7-0 One Millisecond Low. This value in combination with the next register is used to create a 1ms clock.

bits 7–0 1ms = (MSECH • 256 + MSECL + 1) • t_{CLK}. This clock is used to set Flash erase time. See FTCON (SFR EFh).

One Millisecond High Register (MSECH)

	7	6	5	4	3	2	1	0	Reset Value
SFR FDh	MSECH7	MSECH6	MSECH5	MSECH4	MSECH3	MSECH2	MSECH1	MSECH0	0Fh

MSECH7-0 One Millisecond High. This value in combination with the previous register is used to create a 1ms clock.

bits 7–0 $1ms = (MSECH \cdot 256 + MSECL + 1) \cdot t_{CLK}$

One Hundred Millisecond Register (HMSEC)

	7	6	5	4	3	2	1	0	Reset Value
SFR FEh	HMSEC7	HMSEC6	HMSEC5	HMSEC4	HMSEC3	HMSEC2	HMSEC1	HMSEC0	63h

HMSEC7-0 One Hundred Millisecond. This clock divides the 1ms clock to create a 100ms clock.

bits 7-0 100ms = (MSECH • 256 + MSECL + 1) • (HMSEC + 1) • t_{CLK}

Watchdog Timer Register (WDTCON)

	7	6	5	4	3	2	1	0	Reset Value
SFR FFh	EWDT	DWDT	RWDT	WDCNT4	WDCNT3	WDCNT2	WDCNT1	WDCNT0	00h

EWDT Enable Watchdog (R/W).

bit 7 Write 1/Write 0 sequence sets the Watchdog Enable Counting bit.

DWDT Disable Watchdog (R/W).

bit 6 Write 1/Write 0 sequence clears the Watchdog Enable Counting bit.

RWDT Reset Watchdog (R/W).

bit 5 Write 1/Write 0 sequence restarts the Watchdog Counter.

WDCNT4-0 Watchdog Count (R/W).

bits 4–0 Watchdog expires in (WDCNT + 1) • HMSEC to (WDCNT + 2) • HMSEC, if the sequence is not asserted. There is an uncertainty of 1 count.

PACKAGE OPTION ADDENDUM

21-Dec-2004

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
MSC1210Y2PAGR	ACTIVE	TQFP	PAG	64	1500	None	CU SNPB	Level-3-235C-168 HR
MSC1210Y2PAGT	ACTIVE	TQFP	PAG	64	250	None	CU SNPB	Level-3-235C-168 HR
MSC1210Y3PAGR	ACTIVE	TQFP	PAG	64	1500	None	CU SNPB	Level-3-235C-168 HR
MSC1210Y3PAGT	ACTIVE	TQFP	PAG	64	250	None	CU SNPB	Level-3-235C-168 HR
MSC1210Y4PAGR	ACTIVE	TQFP	PAG	64	1500	None	CU SNPB	Level-3-235C-168 HR
MSC1210Y4PAGT	ACTIVE	TQFP	PAG	64	250	None	CU SNPB	Level-3-235C-168 HR
MSC1210Y5PAGR	ACTIVE	TQFP	PAG	64	1500	None	CU SNPB	Level-3-235C-168 HR
MSC1210Y5PAGT	ACTIVE	TQFP	PAG	64	250	None	CU SNPB	Level-3-235C-168 HR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

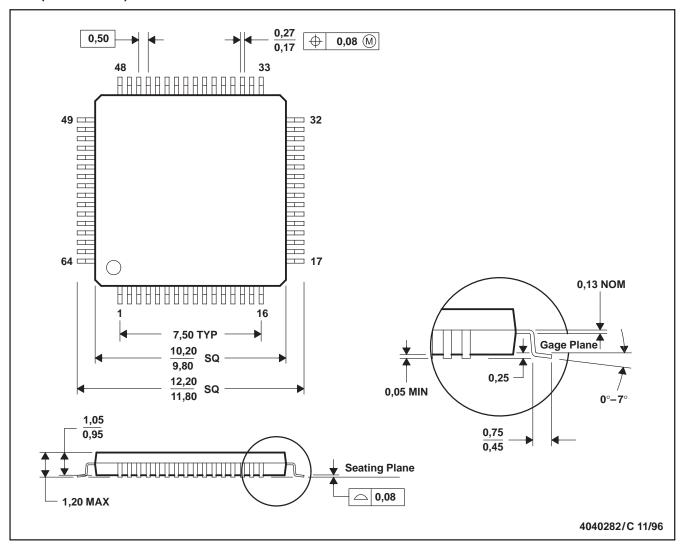
OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

None: Not yet available Lead (Pb-Free).

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.


(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PAG (S-PQFP-G64)

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-026

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265