MOSEL VITELIC

MSS1506

DECEMBER

VOICE ROM

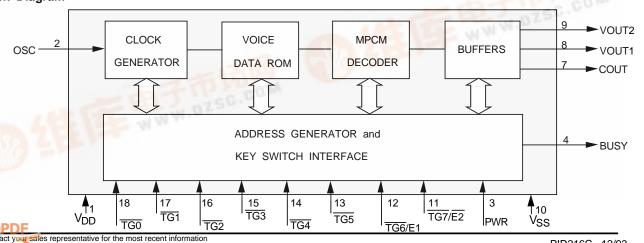
Features

- Single power can operate at 2.4 V through 6V.
- ■Current output could drive 8 ohm speaker with a transistor, Vout could drive buzzer directly.

WWW.DZSC.COM

- ■The voice content is stored up to 15 seconds and can be separated to 64 sections.
- Duration of each section can be different.
- ■Mute is available for each section up to 48 seconds totally.
- A Forever Play function is available.
- Four addressing interface modes are provided for versatile applications: CPU, Stand alone, Ring Trigger and Table Trigger.
- Stand alone mode:
 - 8 sections can be accessed by 8 trigger input pins individually.
- ■Table trigger mode:
 - a. A phrase is accessed by $\overline{TG0}$, low active.
 - b. This phrase is composed of 16 elements contiguously as the table content.
 - c. These 16 elements are chosen from 8 sections.
 - d. Section is located and numbered by 0 through 7. WWW.DZSG.G

- ■Ring trigger mode:
 - a. A section-by-section phrase is accessed by TGO, low active.
 - b. This phrase is composed of 16 element (section)s contiguously as the table content.
 c. Each single trigger plays next one element (section)
 - following above sequence.
 - d. These 16 elements are chosen from 8 sections.
 - e. Section is located and numbered by 0 through 7.
- ■CPU addressing mode:
- a. 64 sections can be accessed by 6 address bits with enable strobe trigger.
- b. Section is located and numbered by 0 through 63.
- c. The address bit is high true.
- Mask option for either retriggerable output or not.
- Mask option for either Level or Edge trigger type.
- For all four modes, retrigger action restarts playing from the beginning.
- One BUSY output signal is available.
- Automatic power down function(selected by external input, pwr).


General Description

The MSS1506 is a single-chip CMOS LSI ROM that can memorize voice up to 15 seconds using MOSEL qualified coding method (MPCM).

Four addressing interfaces are provided: CPU mode, Stand Alone mode, Ring Trigger mode and Table Trigger mode for versatile applications. The voice content can be stored separatly into 64 or 8 or 16 sections or 1 phrase with arbitary length. With minimum external components, this chip can be applied to various application. Customer voice is edited and programmed into ROM by changing one mask during fabrication.

Block Diagram

dzsc.com

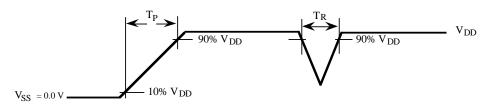
Absolute Maximum Rating

Symbol	Rating	Unit
V _{DD} ~ V _{SS}	-0.5 ~ +7.0	V
V _{IN} (TG) all input pins	V _{SS} -0.3 < V _{IN} < V _{DD} +0.3	V
V _{OUT} (STS) all output pins	V _{SS} <v<sub>OUT < V_{DD}</v<sub>	V
T (Operating)	-10 ~ +60	°C
T (Storage)	-55 ~ +125	°C

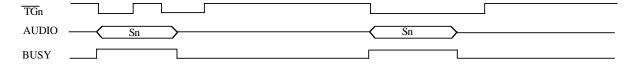
Pad Description

Pad No.	Signal Name	1/0	Function
1	V _{DD}	Power	Positive power supply
2	OSC	I	Oscillator input
3	PWR	I	Active high for non-power down, Internal pull low
4	BUSY	0	Busy signal output, active high
5	NC		
6	NC		
7	Соит	0	Audio signal current output (for speaker)
8	V _{OUT1}	0	Audio signal voltage output (for buzzer)
9	V _{OUT2}	0	Audio signal voltage output (for buzzer)
10	V _{SS}	Power	Negative power supply
11	E2, TG7	NC/I	No connection (RT,TT);Trigger 7, active low(SA); Enable 2, active low (CPU)
12	E1, TG6	NC/I	No connection (RT,TT);Trigger 6, active low (SA); Enable 1, active high (CPU)
13	TG5	NC/I	
14	TG4	NC/I	
15	TG3	NC/I	No connection (RT, TT); Trigger 1 ~ 5, active low (SA); address 1 ~ 5, high true (CPU)
16	TG2	NC/I	(07), address 1 - 0, flight true (01 0)
17	TG1	NC/I	
18	TG0	I	Trigger 0, active low (RT TT, SA); address 0 high true (CPU)

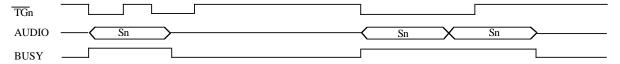
AC Characteristics

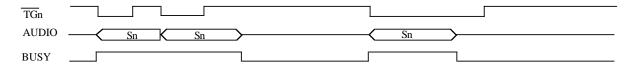

Timing	Parameter	Min.	Тур.	Max.	Unit.
T _T	Trigger pulse width	10	_	_	ms
T _W	Write Enable pulse width	300	_	_	ns
T _H	Trigger address hold time	80	_	_	ns
T _P	Power rise up time	_	_	1	ms
T _R	Power Ripple width	_	_	1	ms

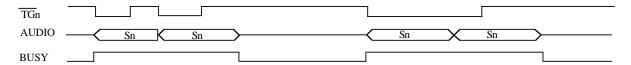
DC Characteristics

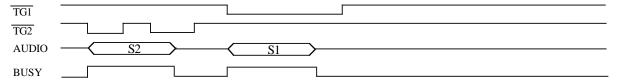

Symbol	Parameter		Min.	Тур.	Max.	Unit	Condition		
I _{SB}	Supply	Sta	nd by	_	1	_			
I _{OP}	Current Operating		_	_	200	μΑ	V _{DD} = 4.5V, I/O Open		
V _{IH}	Input Voltage (T0~T7, E1,E2, PWR)			4	4.5	5		V _{DD} = 4.5V	
VIL			-0.3	0	0.3	V	V _{DD} = 4.5 V		
I _H	Input Current		_	0	1	μΑ	V _{DD} = 4.5V		
I _⊫	(T 0~ T7)			_	_		-15	- 00 -	
Iн	Input Current			_	_	20	μΑ	V _{DD} = 4.5V	
I _L	for PWR		-	0	ı				
I _{OH}	O/P Current Drive		Drive	-8	-13	-18	m Λ	$V_{DD} = 4.5V, V_{O/P} = 0V$	
loL	V _{OUT1} ,V _{OU}	JT2	Sink	8	13	18	mA	$V_{DD} = 4.5V, V_{O/P} = 4.5V$	
I _{OH}	Output Current (BUSY)		_	2	1	Λ	$V_{DD} = 4.5V, V_{O/P} = 0V$		
I _{OL}				4	ı	mA	$V_{DD} = 4.5V, V_{O/P} = 4.5V$		
lω	Output Current (C OUT)		2.4	3	3.6	mA	V _{DD} = 4.5V		
ΔF/F	Frequency Stability				5	%	[Fosc(4.5V) - Fosc(4V)]/Fosc(4.5V)		
ΔF/F	Frequency Variation		_	_	10	%	$V_{DD} = 4.5V$, Rosc = $1.2M\Omega$		

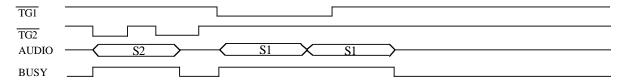
Timing Diagram

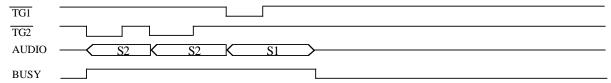

I.1. Acceptable Power On Signal & Ripple

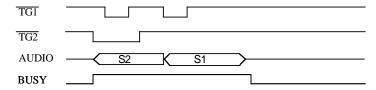

II.1. Stand Alone mode, No Retrigger function, Edge Trigger Mask, low active, single trigger input

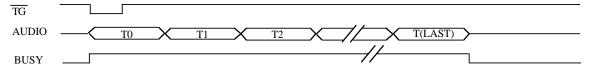

II.2. Stand Alone mode, No Retrigger function, Level Trigger Mask, low active, single trigger input


III.1. Stand Alone mode, Retrigger function, Edge Trigger Mask, low active, single trigger input

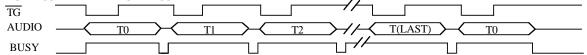

III.1. Stand Alone mode, Retrigger function, Level Trigger Mask, low active, single trigger input


IV. 1. Stand Alone mode, No Retrigger function, Edge Trigger Mask, low active, two non - overlap trigger inputs

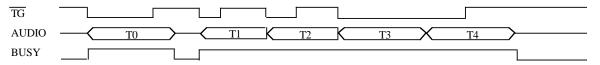

IV. 2. Stand Alone mode, No Retrigger function, Level Trigger Mask, low active, two non - overlap trigger inputs


IV. 3. Stand Alone mode, Retrigger function, low active, two non - overlap trigger inputs

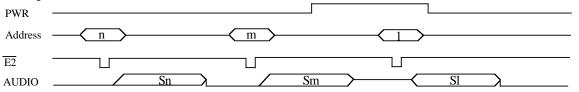
V. 4. Retrigger function, Trigger Mask = Edge or Level, Overlap trigger inputs


V. Table Trigger Mask

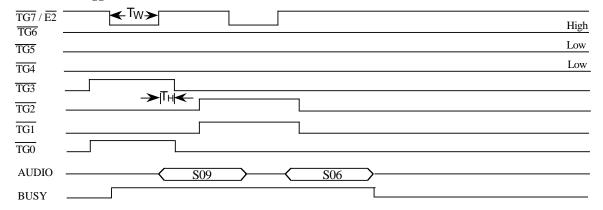
4


NOTE: Tn = nth element of Table content.

VII. Ring Trigger mode, Edge Trigger Mask



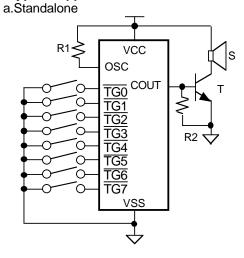
VIII. Ring Trigger mode, Level Trigger Mask

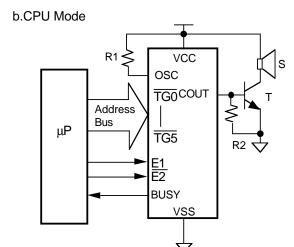

a. When trigger is shorter than a whole section output b. When trigger is longer than a whole section output

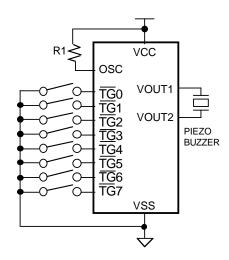
IX. Power keep function

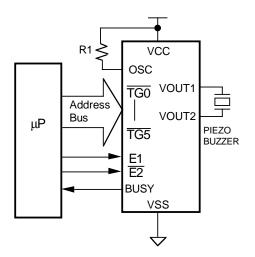
X. Mask as Retrigger / CPU mode (6 - bit address)

XI. Debounce Time

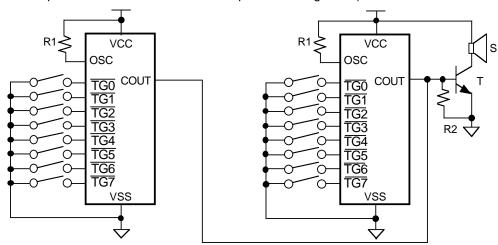


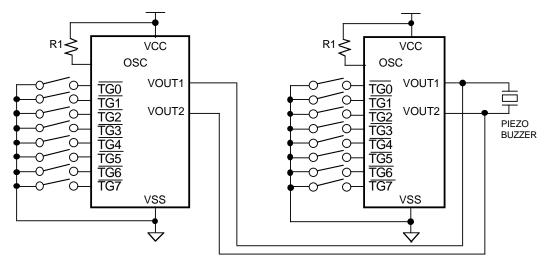

Note: 1. AUDIO means cout, vout1, vout2.


- 2. $\overline{TG0} \sim \overline{TG5}$, E1/ $\overline{TG6}$, $\overline{E2}/\overline{TG7}$ are all internal pull high.
- 3. For standalone mode, $\overline{TG0} \sim \overline{TG7}$ are used as section trigger input (active low).
- 4. Every retrigger action will reload address and play the audio output from the beginning.
- 5. In CPU mode to avoid unwanted noise caused by abrupt change between different sections of messages, it is recommended to program PWR pin to high (V_{DD}) during voice processing.


Application Circuit

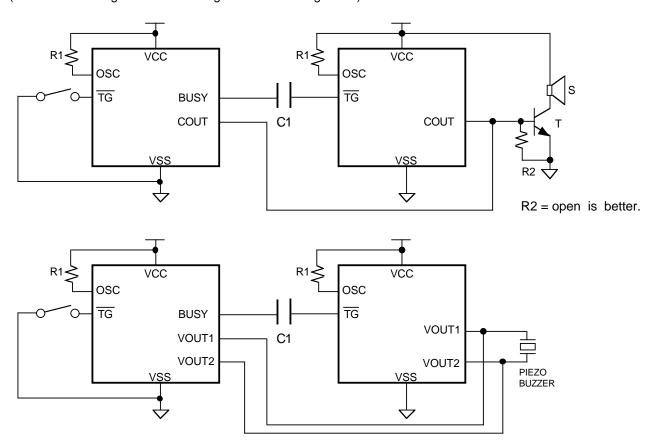
1. Typical Application





2.Parallel Application

(Could extend depth to desired section number in parallel arrangement)

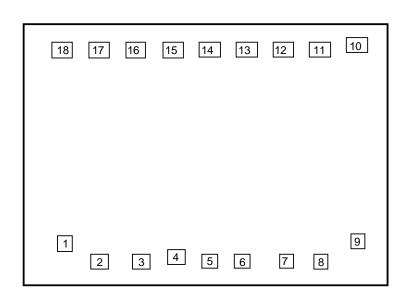


6 PID216C 12/93

3. Cascade Application

(Could extend length to desired length in serial arrangement)

Note: 1. R1 = 1.2 M Ω , C1 = 0.1 μ f, T(transistor) = β > 150, R2 =open, S(speaker) = 1/4 w, 8 Ω ; all typical.


7

- 2. Piezo buzzer resonant frequency being around 1K Hz in recommended.
- 3. Input switch could be replaced by CDS.
- 4. Cout, Vout1, Vout2 are tristate during stand by state.
- 5. Both cascade and parallel application are applied in CPU mode.

PID216C 12/93

Bonding Diagram

Pad I	<u>No</u> .	Designation
1		V_{DD}
2		OSC
3		PWR
4		BUSY
5		NC
6		NC
7		COUT
8		V _{OUT1}
9		V OUT2
10		Vss
11		TG7
12		TG ₆
13		TG5
14		TG4
15		TG3
16		TG ₂
17		TG ₁
18		TG ₀
10		100

Note: Substrate is $V_{\mbox{\scriptsize DD}}$