



### SEMICONDUCTOR

#### Features

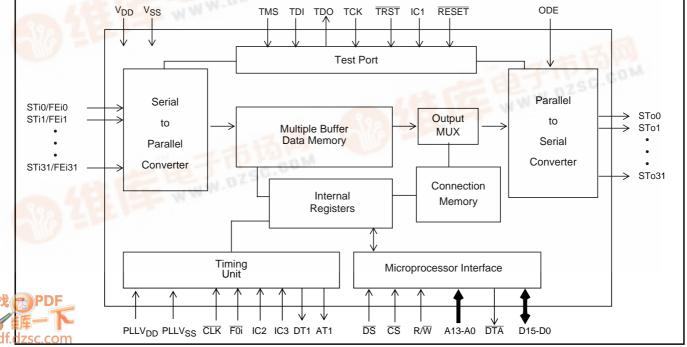
- $4,096 \times 4,096$  channel non-blocking switching at 8.192 or 16.384 Mb/s
- Per-channel variable or constant throughput delav
- Accept ST-BUS streams of 2.048Mb/s, 4.096Mb/s, 8.192Mb/s, or 16.384 Mb/s
- Split Rate mode allows mix of two bit rates and rate conversions
- Automatic frame offset delay measurement for ST-BUS input and output streams
- Per-stream frame delay offset programming
- Per-channel high impedance output control
- Bit Error Monitoring on selected ST-BUS input and output channels.
- Per-channel message mode
- Connection memory block programming
- IEEE-1149.1 (JTAG) Test Port
- 3.3V local I/O with 5V tolerant inputs and TTL compatible outputs

#### Applications

- Medium and large switching platforms
- **CTI** application
- Voice/data multiplexer
- Digital cross connects
- WAN access system
- Wireless base stations

#### DS5197 **ISSUE 2** June 1999 **Ordering Information** MT90826AL 160 Pin MQFP MT90826AG 160 Pin PBGA -40 to +85 C

24小时加急出货


#### Description

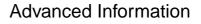
专业PCB打样工厂

The MT90826 Quad Digital Switch has a nonblocking switch capacity of 4,096 x 4,096 channels at a serial bit rate of 8.192Mb/s or 16.384 Mb/s, 2,048 x 2,048 channels at 4.096Mb/s and 1024 x 1024 channels at 2.048Mb/s. The device has many features that are programmable on a per stream or per channel basis, including message mode, input offset delay and high impedance output control.

The per stream input and output delay control is particularly useful for managing large multi-chip switches with a distributed backplane.

Operating in Split Rate mode allows for switching between two groups of bit rate streams.




#### Figure 1 - Functional Block Diagram

MT90826

# **Quad Digital Switch**

Advanced Information

### MT90826 CMOS



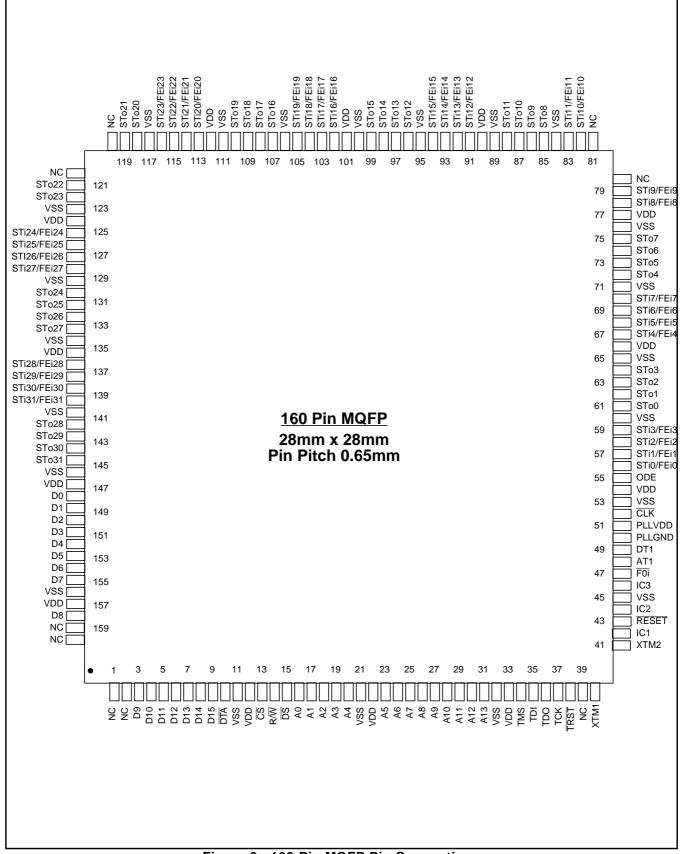



Figure 2 - 160-Pin MQFP Pin Connections

## CMOS **MT90826**

| _             | 1             | 1          | 2          | 3          | 4          | 5          | 6                   | 7          | 8             | 9          | 10         | 11         | 12         | 13         |
|---------------|---------------|------------|------------|------------|------------|------------|---------------------|------------|---------------|------------|------------|------------|------------|------------|
|               | A             | 0          | 0          | 0          | 0          | 0          | 0                   | 0          | 0             | 0          | $\bigcirc$ | 0          | 0          | 0          |
|               |               | STi26      | STi24      | STo20      | STi22      | STi20      | STi18               | STi16      | STo15         | ST013      | STo10      | STo8       | STi10      | STi9       |
| E             | в             | $\bigcirc$ | 0          | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0                   | 0          | 0             | $\bigcirc$ | $\bigcirc$ | 0          | $\bigcirc$ | $\bigcirc$ |
|               |               | STi27      | STi25      | STo21      | STi23      | STi21      | STi19               | STi17      | STo14         | STo12      | STo11      | STo9       | STi11      | STi8       |
| C             | c             | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$          | $\bigcirc$ | $\bigcirc$    | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|               |               | STo26      | STo25      | STo23      | STo19      | STo18      | STo17               | STo16      | STi15         | STi14      | STi13      | STi12      | STo7       | STo5       |
| [             | D             | 0          | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$          | 0          | $\bigcirc$    | $\bigcirc$ | 0          | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|               |               | STo27      | STo24      | STo22      | GND        | VDD        | VDD                 | VDD        | VDD           | VDD        | GND        | STo3       | STo6       | STo4       |
| E             | E             | 0          | 0          | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0                   | $\bigcirc$ | $\bigcirc$    | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|               |               | STi30      | STi28      | NC         | VDD        | GND        | GND                 | GND        | GND           | GND        | VDD        | STo2       | STi7       | STi6       |
| F             | F             | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |                     |            |               | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|               |               | STi31      | STi29      | NC         | VDD        | GND        |                     |            |               | GND        | VDD        | STo1       | STi5       | STi4       |
| (             | G             | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | т                   |            | `\ <b>\</b> / | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|               |               | STo28      | STo29      | D0         | VDD        | GND        |                     |            |               | GND        | VDD        | STo0       | STi3       | STi2       |
| ł             | н             | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |                     |            |               | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|               |               | STo30      | STo31      | D2         | VDD        | GND        |                     |            |               | GND        | GND        | DT1        | STi1       | STi0       |
|               | J             | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0                   | $\bigcirc$ | $\bigcirc$    | 0          | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|               |               | D1         | D3         | D4         | VDD        | GND        | GND                 | GND        | GND           | GND        | VDD        | XTM2       | AT1        | ODE        |
| ł             | к             | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$          | $\bigcirc$ | $\bigcirc$    | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|               |               | D5         | D6         | D7         | GND        | VDD        | VDD                 | VDD        | NC            | PLLVDD     | PLLGN      | ID XTM1    | F0i        | CLK        |
| l             | ∟             | 0          | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0          | $\bigcirc$          | $\bigcirc$ | $\bigcirc$    | 0          | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|               |               | D8         | D9         | NC         | NC         | NC         | NC                  | A9         | A10           | A12        | A13        | IC1        | IC2        | IC3        |
| 1             | м             | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$          | $\bigcirc$ | $\bigcirc$    | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|               |               | D10        | D11        | D12        | DTA        | CS         | A0                  | A3         | A7            | A8         | A11        | TDI        | TRST       | RESET      |
| 1             | N             | 0          | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$          | $\bigcirc$ | $\bigcirc$    | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|               |               | D13        | D14        | D15        | R/W        | DS         | A1                  | A2         | A4            | A5         | A6         | TMS        | TDO        | тск        |
| ∑ - A1 corner | L<br>r is ide | ntified by | metalli    | zed mar    | kings.     |            | 23mm :<br>Ball Pito |            |               |            |            |            |            |            |
|               |               |            |            |            |            |            |                     |            |               |            |            |            |            |            |

Figure 3 - 160-Pin PBGA Pin Connections

### **Pin Description**

| Pin # MQFP                                                                                          | Pin # PBGA                                                                                                | Name            | Description            |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------|------------------------|
| 12,22,33,54,<br>66,77,90,101,<br>112,125,136,<br>147,157                                            | D5,D6,D7,D8,D9,<br>E4,E10,F4,<br>F10,G4,G10,<br>H4,J4,J10,K5,<br>K6,K7                                    | V <sub>DD</sub> | +3.3 Volt Power Supply |
| 11,21,32,45,<br>53,60,65,71,<br>76,84,89,95,<br>100,106,111,<br>117,124,130,<br>135,141,146,<br>156 | D4,D10,E5,E6,E7<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, |                 | Ground                 |

### Pin Description (continued)

| Pin # MQFP | Pin # PBGA | Name   | Description                                                                                                                                                                                                                                                                                                                                         |
|------------|------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 34         | N11        | TMS    | <b>Test Mode Select (3.3V Input with Internal pull-up):</b><br>JTAG signal that controls the state transitions of the TAP<br>controller. This pin is pulled high by an internal pull-up<br>when not driven.                                                                                                                                         |
| 35         | M11        | TDI    | <b>Test Serial Data In (3.3V Input with Internal pull-up):</b><br>JTAG serial test instructions and data are shifted in on<br>this pin. This pin is pulled high by an internal pull-up when<br>not driven.                                                                                                                                          |
| 36         | N12        | TDO    | <b>Test Serial Data Out (3.3V Output):</b> JTAG serial data is output on this pin on the falling edge of TCK. This pin is held in high impedance state when JTAG scan is not enabled.                                                                                                                                                               |
| 37         | N13        | тск    | <b>Test Clock (5V Tolerant Input):</b> Provides the clock to the JTAG test logic.                                                                                                                                                                                                                                                                   |
| 38         | M12        | TRST   | <b>Test Reset (3.3V Input with internal pull-up):</b><br>Asynchronously initializes the JTAG TAP controller by<br>putting it in the Test-Logic-Reset state. This pin is pulled<br>by an internal pull-up when not driven. This pin should be<br>pulsed low on power-up, or held low, to ensure that the<br>device is in the normal functional mode. |
| 40         | K11        | XTM1   | PLL Test Access 1 (3.3V Input): Use for PLL testing only. No connect for normal operation.                                                                                                                                                                                                                                                          |
| 41         | J11        | XTM2   | PLL Test Access 1 (3.3V Input): Use for PLL testing only. No connect for normal operation.                                                                                                                                                                                                                                                          |
| 42         | L11        | IC1    | Internal Connection 1 (3.3V Input with internal pull-<br>down): Connect to $V_{SS}$ for normal operation.                                                                                                                                                                                                                                           |
| 43         | M13        | RESET  | <b>Device Reset (5V Tolerant Input):</b> This input (active LOW) puts the device in its reset state which clears the device internal counters and registers.                                                                                                                                                                                        |
| 44         | L12        | IC2    | Internal Connection 2 (3.3V Input with internal pull-<br>down): Connect to $V_{SS}$ for normal operation.<br>When IC3 pin is tied to 3.3V, this pin is used as the PLL<br>bypass clock input for PLL testing only.                                                                                                                                  |
| 46         | L13        | IC3    | Internal Connection 3 (3.3V Input with internal pull-<br>down): Connect to $V_{SS}$ for normal operation.<br>When this pin is tied to 3.3V, it enables the PLL bypass<br>mode for PLL testing only.                                                                                                                                                 |
| 47         | K12        | F0i    | Master Frame Pulse (5V Tolerant Input): This input accepts a 60ns wide negative frame pulse.                                                                                                                                                                                                                                                        |
| 48         | J12        | AT1    | Analog Test Access (Bidirectional): Use for PLL testing only. No connect for normal operation.                                                                                                                                                                                                                                                      |
| 49         | H11        | DT1    | <b>Digital Test Access Output (Output):</b> Use for PLL testing only. No connect for normal operation.                                                                                                                                                                                                                                              |
| 50         | K10        | PLLGND | Phase Lock Loop Ground.                                                                                                                                                                                                                                                                                                                             |
| 51         | K9         | PLLVDD | Phase Lock Loop Power Supply: 3.3V                                                                                                                                                                                                                                                                                                                  |

### Pin Description (continued)

| Pin # MQFP                                                                                           | Pin # PBGA                                                                                                                                     | Name                                                                                                                                                                                                              | Description                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 52                                                                                                   | K13                                                                                                                                            | CLK                                                                                                                                                                                                               | Master Clock (5V Tolerant Input): Serial clock for<br>shifting data in/out on the serial streams. This pin accepts<br>a clock frequency of 8.192MHz or 16.384 MHz. The CPLL<br>bit in the control register determines the usage of the<br>clock frequency. See Table 6 for details.                                                                                     |
| 55                                                                                                   | J13                                                                                                                                            | ODE                                                                                                                                                                                                               | <b>Output Drive Enable (5V Tolerant Input):</b> This is the output-enable control pin for the STo0 to STo31 serial outputs. See Table 2 for details.                                                                                                                                                                                                                    |
| 56<br>57<br>58<br>59<br>67-70<br>78,79<br>82,83<br>91-94<br>102-105<br>113-116<br>126-129<br>137-140 | H13<br>H12<br>G13<br>G12<br>F13,F12,E13,E12<br>B13,A13<br>A12,B12<br>C11,C10,C9,C8<br>A7,B7,A6,B6<br>A5,B5,A4,B4<br>A2,B2,A1,B1<br>E2,F2,E1,F1 | STi0/FEi0,<br>STi1/FEi1<br>STi2/FEi2<br>STi3/FEi3<br>STi4-7/FEi4-7<br>STi8-9/FEi8-9<br>STi10-11/FEi10-11<br>STi12-15/FEi12-15<br>STi16-19/FEi16-19<br>STi20-23/FEi20-23<br>STi24-27/FEi24-27<br>STi28-31/FEi28-31 | Serial Input Streams 0 to 31 and Frame Evaluation<br>Inputs 0 to 31 (5V Tolerant Inputs): Serial data input<br>streams. These streams may have data rates of 2.048,<br>4.096, 8.192 or 16.384 Mb/s, depending upon the value<br>programmed at bits DR0 - DR2 in the control register. In<br>the frame evaluation mode, they are used as the frame<br>evaluation inputs. |
| 61-64<br>72-75<br>85-88<br>96-99<br>107-110<br>118,119<br>122,123<br>131-134<br>142-145              | G11,F11,E11,D11<br>D13,C13,D12,C12<br>A11,B11,A10,B10<br>B9,A9,B8,A8<br>C7,C6,C5,C4<br>A3,B3<br>D3,C3<br>D2,C2,C1,D1<br>G1,G2,H1,H2            | STo0 - 3<br>STo4 - 7<br>STo8 - 11<br>STo12 - 15<br>STo16 - 19<br>STo20, STo21<br>STo22, STo23<br>STo24 - 27<br>STo28 - 31                                                                                         | <b>ST-BUS Output 0 to 31 (Three-state Outputs).</b> Serial data output streams. These streams may have data rates of 2.048, 4.096, 8.192, or 16.384 Mb/s, depending upon the value programmed at bits DR0 - DR2 in the control register.                                                                                                                                |
| 148-153<br>154,155<br>158<br>3-7<br>8,9                                                              | G3,J1,H3,J2,J3,K1,<br>K2,K3<br>L1<br>L2,M1,M2,M3,N1,<br>N2,N3                                                                                  | D0 - 5,<br>D6,D7<br>D8<br>D9 - 13<br>D14,D15                                                                                                                                                                      | Data Bus 0 -15 (5V Tolerant I/O): These pins form the 16-bit data bus of the microprocessor port.                                                                                                                                                                                                                                                                       |
| 10                                                                                                   | M4                                                                                                                                             | DTA                                                                                                                                                                                                               | <b>Data Transfer Acknowledgment (Three-state Output):</b><br>This output pulses low from tristate to indicate that a<br>databus transfer is complete. A pull-up resistor is required<br>to hold a HIGH level when the pin is tristated.                                                                                                                                 |
| 15                                                                                                   | N5                                                                                                                                             | DS                                                                                                                                                                                                                | <b>Data Strobe (5V Tolerant Input):</b> This active low input works in conjunction with CS to enable the read and write operations.                                                                                                                                                                                                                                     |
| 14                                                                                                   | N4                                                                                                                                             | R/W                                                                                                                                                                                                               | <b>Read/Write (5V Tolerant Input):</b> This input controls the direction of the data bus lines (D0-D15) during a microprocessor access.                                                                                                                                                                                                                                 |
| 13                                                                                                   | M5                                                                                                                                             | CS                                                                                                                                                                                                                | Chip Select (5V Tolerant Input): Active low input used by a microprocessor to activate the microprocessor port.                                                                                                                                                                                                                                                         |
| 16-20<br>23-31                                                                                       | M6,N6,N7,M7,N8<br>N9,N10,M8,M9,L7<br>L8,M10,L9,A10                                                                                             | A0 - A4<br>A5-A13                                                                                                                                                                                                 | Address 0 - 13 (5V Tolerant Input): These lines provide<br>the A0 - A13 address lines when accessing the internal<br>registers or memories.                                                                                                                                                                                                                             |
| 1,2,39,80,81,120,<br>121,159,160                                                                     | E3,F3,K8,<br>L3,L4,L5,L6                                                                                                                       | NC                                                                                                                                                                                                                | No Connect                                                                                                                                                                                                                                                                                                                                                              |

#### **Device Overview**

The MT90826 Quad Digital Switch is capable of switching up to  $4,096 \times 4,096$  channels. The MT90826 is designed to switch 64 kbit/s PCM or N x 64k bit/s data. The device maintains frame integrity in data applications and minimum throughput delay for voice applications on a per channel basis.

The serial input streams of the MT90826 can have a bit rate of 2.048, 4.096, 8.192 or 16.384 Mbit/s and are arranged in 125 $\mu$ s wide frames, which contain 32, 64,128 or 256 channels, respectively. The data rates on input and output streams match. All inputs and outputs may be programmed to 2.048, 4.096 or 8.192 Mb/s. STi0-15 and STo0-15 may be set to 16.384 Mb/s. Combinations of two bit rates, *N* and *2N* are provided. See Table 1.

By using Mitel's message mode capability, the microprocessor can access input and output timeslots on a per channel basis. This feature is useful for transferring control and status information for external circuits or other ST-BUS devices.

The frame offset calibration function allows users to measure the frame offset delay for streams STi0 to STi31. The offset calibration is activated by a frame evaluation bit in the frame evaluation register. The evaluation result is stored in the frame evaluation registers and can be used to program the input offset delay for individual streams using internal frame input offset registers.

The microport interface is compatible with Motorola non-multiplexed buses. Connection memorv locations may be directly written to or read from; data memory locations may be directly read from. A DTA signal is provided to hold the bus until the asynchronous microport operation is queued into the device. For applications that require no wait states, indirect reading and writing may be used. Intermediary registers are directly programmed with the write data and address, or read address. The data in the intermediary registers is internally transferred synchronous with the operation of the internal state machines. Completion of the operation is indicated by a status register flag.

#### **Functional Description**

A functional Block Diagram of the MT90826 is shown in Figure 1.

#### **Data and Connection Memory**

For all data rates, the received serial data is converted to parallel format by internal serial-toparallel converters and stored sequentially in the data memory. Depending upon the selected operation programmed in the control register, the usable data memory may be as large as 4,096 bytes. The sequential addressing of the data memory is performed by an internal counter, which is reset by the input 8 kHz frame pulse ( $\overline{F0i}$ ) to mark the frame boundaries of the incoming serial data streams.

Data to be output on the serial streams may come from either the data memory or connection memory.

| Serial Interface Mode | Input Stream | Input Data Rate | Output Stream | Output Data Rate |
|-----------------------|--------------|-----------------|---------------|------------------|
| 8 Mb/s                | STi0-31      | 8 Mb/s          | STo0-31       | 8 Mb/s           |
| 16 Mb/s               | STi0-15      | 16 Mb/s         | STo0-15       | 16 Mb/s          |
| 4 Mb/s and 8 Mb/s     | STi0-15      | 4 Mbs/          | STo0-15       | 4 Mb/s           |
|                       | STi15-31     | 8 Mb/s          | STo16-31      | 8 Mb/s           |
| 16 Mb/s and 8 Mb/s    | STi0-11      | 16 Mb/s         | STo0-11       | 16 Mb/s          |
|                       | STi12-19     | 8 Mb/s          | STo12-19      | 8 Mb/s           |
| 4 Mb/s                | STi0-31      | 4 Mb/s          | STo0-31       | 4 Mb/s           |
| 2 Mb/s and 4 Mb/s     | STi0-15      | 2 Mb/s          | STo0-15       | 2 Mb/s           |
|                       | STi16-31     | 4 Mb/s          | STo16-31      | 4 Mb/s           |
| 2 Mb/s                | STi0-31      | 2 Mb/s          | STo0-31       | 2 Mb/s           |

Table 1 - Stream Usage and External Clock Rates

Locations in the connection memory are associated with particular ST-BUS output channels. When a channel is due to be transmitted on an ST-BUS output, the data for this channel can be switched either from an ST-BUS input in connection mode, or from the lower half of the connection memory in message mode. Data destined for a particular channel on a serial output stream is read from the data memory or connection memory during the previous channel timeslot. This allows enough time for memory access and parallel-to-serial conversion.

#### Connection and Message Modes

In the connection mode, the addresses of the input source data for all output channels are stored in the connection memory. The connection memory is mapped in such a way that each location corresponds to an output channel on the output streams. For details on the use of the source address data (CAB and SAB bits), see Table 18. Once the source address bits are programmed by the microprocessor, the contents of the data memory at the selected address are transferred to the parallel-to-serial converters and then onto an ST-BUS output stream.

By having several output channels connected to the same input source channel, data can be broadcasted from one input channel to several output channels.

In message mode, the microprocessor writes data to the connection memory locations corresponding to the output stream and channel number. The lower half (8 least significant bits) of the connection memory content is transferred directly to the parallelto-serial converter. This data will be output on the ST-BUS streams in every frame until the data is changed by the microprocessor.

The three most significant bits of the connection memory controls the following for an output channel: message or connection mode, constant or variable delay mode, enables/tristate the ST-BUS output drivers and bit error test pattern enable. If an output channel is set to a high-impedance state by setting the OE bit to zero in the connection memory, the ST-BUS output will be in a high impedance state for the duration of that channel. In addition to the perchannel control, all channels on the ST-BUS outputs can be placed in a high impedance state by pulling the ODE input pin low and programming the output stand by (OSB) bit in the control register to low. This action overrides the individual per-channel programming by the connection memory bits. See Table 2 for detail.

The connection memory data can be accessed via the microprocessor interface through the D0 to D15 pins. The addressing of the device internal registers, data and connection memories is performed through the address input pins and the Memory Select (MS) bit of the control register.

#### **Clock Timing Requirements**

The master clock ( $\overline{\text{CLK}}$ ) frequency must be either at 8.192 or 16.384MHz for serial data rate of 2.048, 4.096, 8.192 and 16.384Mb/s; see Table 6 for the selections of the master clock frequency.

#### Switching Configurations

The MT90826 maximum non-blocking switching configurations is determined by the data rates selected for the serial inputs and outputs. The switching configuration is selected by three DR bits in the control register. See Table 5 and Table 6.

#### 8Mb/s mode (DR2=0, DR1=0, DR0=0)

When the 8Mb/s mode is selected, the device is configured with 32-input/32-output data streams each having 128 64Kbit/s channels. This mode allows a maximum non-blocking capacity of 4,096 x 4,096 channels. Table 1 summarizes the switching configurations and the relationship between different serial data rates and the master clock frequencies.

| ODE pin | OSB bit in Control register | OE bit in Connection Memory | ST-BUS Output Driver |
|---------|-----------------------------|-----------------------------|----------------------|
| 0       | 0                           | Х                           | High-Z               |
| Х       | Х                           | 0                           | Per Channel High-Z   |
| 1       | 0                           | 1                           | Enable               |
| 0       | 1                           | 1                           | Enable               |
| 1       | 1                           | 1                           | Enable               |

#### <u>16Mb/s mode</u> (DR2=0, DR1=0, DR0 =1)

When the 16Mb/s mode is selected, the device is configured with 16-input/16-output data streams each having 256 64Kbit/s channels. This mode allows a maximum non-blocking capacity of 4,096 x 4,096 channels.

#### 4Mb/s and 8Mb/s mode (DR2=0, DR1=1, DR0=0)

When the 4Mb/s and 8Mb/s mode is selected, the device is configured with 32-input/32-output data streams. STi0-15/STo0-15 have a data rate of 4Mb/s and STi16-31/STo16-31 have a data rate of 8Mb/s. This mode allows a maximum non-blocking capacity of 3,072 x 3,072 channels.

#### <u>16Mb/s and 8Mb/s mode</u> (DR2=0, DR1=1, DR0=1)

When the 16Mb/s and 8Mb/s mode is selected, the device is configured with 20-input/20-output data streams. STi0-11/STo0-11 have a data rate of 16Mb/ s and STi12-19/STo12-19 have a data rate of 8Mb/s. This mode allows a maximum non-blocking capacity of 4,096 x 4,096 channels.

#### 4Mb/s mode (DR2=1, DR1=0, DR0=0)

When the 4Mb/s mode is selected, the device is configured with 32-input/32-output data streams each having 64 64Kbit/s channels. This mode allows a maximum non-blocking capacity of 2,048 x 2,048 channels.

#### <u>2Mb/s and 4Mb/s mode</u> (DR2=1, DR1=0, DR0=1)

When the 2Mb/s and 4Mb/s mode is selected, the device is configured with 32-input/32-output data streams. STi0-15/STo0-15 have a data rate of 2Mb/s and STi16-31/STo16-31 have a data rate of 4Mb/s. This mode allows a maximum non-blocking capacity of 1,536 x 1,536 channels.

#### 2Mb/s mode (DR2=1, DR1=1, DR0 =0)

When the 2Mb/s mode is selected, the device is configured with 32-input/32-output data streams each having 32 64Kbit/s channels. This mode allows a maximum non-blocking capacity of 1,024 x 1,024 channels.

#### Serial Input Frame Alignment Evaluation

The MT90826 provides the frame evaluation inputs, FEi0 to FEi31, to determine different data input delays with respect to the frame pulse  $\overline{F0i}$ . By using the frame evaluation input select bits (FE0 to FE4) of the frame alignment register (FAR), users can select one of the thirty-two frame evaluation inputs for the frame alignment measurement. The internal master clock, which has a fixed relationship with the  $\overline{CLK}$  and  $\overline{F0i}$  depending upon the mode of operation, is used as the reference timing signal to determine the input frame delays. See Figure 4 for the signal alignments between the internal and the external master clocks.

A measurement cycle is started by setting the start frame evaluation (SFE) bit low for at least one frame. Then the evaluation starts when the SFE bit in the control register is changed from low to high. Two frames later, the complete frame evaluation (CFE) bit of the frame alignment register changes from low to high to signal that a valid offset measurement is ready to be read from bits 0 to 9 of the FAR register. The SFE bit must be set to zero before a new measurement cycle started.

The falling edge of the frame measurement signal (FEi) is evaluated against the falling edge of the frame pulse ( $\overline{F0i}$ ). See Table 7 for the description of the frame alignment register.

#### Input Frame Offset Selection

Input frame offset selection allows the channel alignment of individual input streams, which operate at 4.096Mb/s, 8.192Mb/s or 16.384Mb/s, to be shifted against the input frame pulse (F0i). The input offset selection is not available for streams operated at 2.048Mb/s. This feature is useful in compensating for variable path delays caused by serial backplanes of variable lengths, which may be implemented in large centralized and distributed switching systems.

Each input stream has its own delay offset value programmed by the input delay offset registers. Each delay offset register can control 4 input streams. There are eight delay offset registers (DOS0 to DOS7) to control 32 input streams. Possible adjustment can range up to +4.5 internal master clock periods forward with resolution of 1/2 internal master clock period. See Table 8 and Table 9 for frame input delay offset programming.

#### **Output Advance Offset Selection**

The MT90826 allows users to advance individual output streams up to 45ns with a resolution of 15ns when the device is in 8Mb/s, 16Mb/s, 4 and 8 Mb/s or 16 and 8 Mb/s mode. The output delay adjustment is useful in compensating for variable output delays caused by various output loading conditions. The frame output offset registers (FOR0 & FOR3) control the output offset delays for each output streams via the programming of the OFn bits.

See Table 10 and Table 11 for the frame output offset programming.

#### Memory Block Programming

The MT90826 provides users with the capability of initializing the entire connection memory block in two frames. Bits 13 to 15 of every connection memory location will be programmed with the pattern stored in bits 13 to 15 of the control register.

The block programming mode is enabled by setting the memory block program (MBP) bit of the control register high. When the block programming enable (BPE) bit of the control register is set to high, the block programming data will be loaded into the bits 13 to 15 of every connection memory location. The other connection memory bits (bit 0 to 12) are loaded with zeros. When the memory block programming is complete, the device resets the BPE bit to zero.

#### **Bit Error Monitoring**

The MT90826 allows users to perform bit error monitoring by sending a pseudo random pattern to a selected ST-BUS output channel and receiving the pattern from a selected ST-BUS input channel. The pseudo random pattern is internally generated by the device with the polynomial of  $2^{15}$ -1.

Users can select the pseudo random pattern to be presented on a ST-BUS channel by programming the TM0 and TM1 bits in the connection memory. When TM0 and TM1 bits are high, the pseudo random pattern is output to the selected ST-BUS output channel. The pseudo random pattern is then received by a ST-BUS input channel which is selected using the BSA and BCA bits in the bit error rate input register (BISR). An internal bit error counter keeps track of the error counts which is then stored in the bit error count register (BECR).

The bit error test is enabled and disabled by the SBER bit in the control register. Setting the bit from zero to one initiates the bit error test and enables the internal bit error counter. When the bit is programmed from one to zero, the internal bit error counter transfers the error counts to the bit error count register.

In the control register, a zero to one transition of the CBER bit resets the bit error count register and the internal bit error counter.

#### Delay Through the MT90826

The switching of information from the input serial streams to the output serial streams results in a throughput delay. The device can be programmed to perform timeslot interchange functions with different throughput delay capabilities on the per-channel basis. For voice application, select variable throughput delay to ensure minimum delay between input and output data. In wideband data applications, select constant throughput delay to maintain the frame integrity of the information through the switch.

The delay through the device varies according to the type of throughput delay selected by the TM bits in the connection memory.

#### Variable Delay Mode (TM1=0, TM0=0)

The delay in this mode is dependent only on the combination of source and destination channels and is independent of input and output streams.

#### Constant Delay Mode (TM1=1, TM0=0)

In this mode, frame integrity is maintained in all switching configurations by making use of a multiple data memory buffer.

#### **Microprocessor Interface**

The MT90826 provides a parallel microprocessor interface for non-multiplexed bus structures. This interface is compatible with Motorola non-multiplexed buses. The required microprocessor signals are the 16-bit data bus (D0-D15), 14-bit address bus (A0-A13) and 4 control lines ( $\overline{CS}$ ,  $\overline{DS}$ , R/W and  $\overline{DTA}$ ). See Figure 14 for Motorola non-multiplexed microport timing.

The MT90826 microport provides access to the internal registers, connection and data memories. All locations provide read/write access except for the data memory, DRR and BECR registers which are read only.

For data memory read operations, two consecutive microprocessor cycles are required. The read address (A0-A13) should remain the same for the two consecutive read cycles. The data memory content from the first read cycle should be ignored. The correct data memory content will be presented to the data bus (D0-D15) on the second read cycle.

| A13 | A12 | A11 | A10 | A9 | A8 | A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 | Location                                 |
|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|------------------------------------------|
| 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | Control Register, CR                     |
| 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | Frame Alignment Register, FAR            |
| 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | Input Offset Selection Register 0, DOS0  |
| 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | Input Offset Selection Register 1, DOS1  |
| 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | Input Offset Selection Register 2, DOS2  |
| 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 1  | Input Offset Selection Register 3, DOS3  |
| 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 0  | Input Offset Selection Register 4, DOS4  |
| 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | Input Offset Selection Register 5, DOS5  |
| 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | Input Offset Selection Register 6, DOS6  |
| 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 1  | Input Offset Selection Register 7, DOS7  |
| 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 1  | 0  | Frame Output Offset Register, FOR0       |
| 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 1  | 1  | Frame Output Offset Register, FOR1       |
| 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 0  | 0  | Frame Output Offset Register, FOR2       |
| 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 0  | 1  | Frame Output Offset Register, FOR3       |
| 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 0  | Unused                                   |
| 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1  | Unused                                   |
| 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | Unused                                   |
| 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 1  | Bit Error Input Selection Register, BISR |
| 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 1  | 0  | Bit Error Count Register, BECR           |

Table 3 - Address Map for Registers (A13 = 0)

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                       | S   | stream A | Address | (ST0-31 | )                  |    |    |    | Cł | nannel | Addre | ess (Cl | h <b>0-2</b> 55 | )                   |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|---------|---------|--------------------|----|----|----|----|--------|-------|---------|-----------------|---------------------|
| A13              | A12                                                                                                                                                                                                                                                                                                                                                                                                                   | A11 | A10      | A9      | A8      | Stream<br>Location | A7 | A6 | A5 | A4 | A3     | A2    | A1      | A0              | Channel<br>Location |
| 1                | 0                                                                                                                                                                                                                                                                                                                                                                                                                     | 0   | 0        | 0       | 0       | Stream 0           | 0  | 0  | 0  | 0  | 0      | 0     | 0       | 0               | Ch 0                |
| 1                | 0                                                                                                                                                                                                                                                                                                                                                                                                                     | 0   | 0        | 0       | 1       | Stream 1           | 0  | 0  | 0  | 0  | 0      | 0     | 0       | 1               | Ch 1                |
| 1                | 0                                                                                                                                                                                                                                                                                                                                                                                                                     | 0   | 0        | 1       | 0       | Stream 2           |    |    |    |    |        |       |         |                 |                     |
| 1                | 0                                                                                                                                                                                                                                                                                                                                                                                                                     | 0   | 0        | 1       | 1       | Stream 3           |    |    |    |    |        |       |         |                 |                     |
| 1                | 0                                                                                                                                                                                                                                                                                                                                                                                                                     | 0   | 1        | 0       | 0       | Stream 4           | 0  | 0  | 0  | 1  | 1      | 1     | 1       | 0               | Ch 30               |
| 1                | 0                                                                                                                                                                                                                                                                                                                                                                                                                     | 0   | 1        | 0       | 1       | Stream 5           | 0  | 0  | 0  | 1  | 1      | 1     | 1       | 1               | Ch 31 (Note 2)      |
| 1                | 0                                                                                                                                                                                                                                                                                                                                                                                                                     | 0   | 1        | 1       | 0       | Stream 6           | 0  | 0  | 1  | 0  | 0      | 0     | 0       | 0               | Ch 32               |
| 1                | 0                                                                                                                                                                                                                                                                                                                                                                                                                     | 0   | 1        | 1       | 1       | Stream 7           | 0  | 0  | 1  | 0  | 0      | 0     | 0       | 1               | Ch 33               |
| 1                | 0                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   | 0        | 0       | 0       | Stream 8           |    |    |    |    |        |       |         |                 |                     |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                       |     |          |         |         |                    |    |    |    |    |        |       | .       |                 |                     |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                       |     |          |         |         |                    | 0  | 0  | 1  | 1  | 1      | 1     | 1       | 0               | Ch 62               |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                       |     |          |         |         |                    | 0  | 0  | 1  | 1  | 1      | 1     | 1       | 1               | Ch 63 (Note 3)      |
| 1                | 1                                                                                                                                                                                                                                                                                                                                                                                                                     | 0   | 1        | 1       | 0       | Stream 22          | 0  | 1  | 0  | 0  | 0      | 0     | 0       | 0               | Ch 64               |
| 1                | 1                                                                                                                                                                                                                                                                                                                                                                                                                     | 0   | 1        | 1       | 1       | Stream 23          | 0  | 1  | 0  | 0  | 0      | 0     | 0       | 1               | Ch 65               |
| 1                | 1                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   | 0        | 0       | 0       | Stream 24          |    |    |    |    |        |       |         |                 |                     |
| 1                | 1                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   | 0        | 0       | 1       | Stream 25          | 0  | 1  | 1  | 1  | 1      | 1     | 1       | 0               | Ch 126              |
| 1                | 1                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   | 0        | 1       | 0       | Stream 26          | 0  | 1  | 1  | 1  | 1      | 1     | 1       | 1               | Ch 127 (Note 4)     |
| 1                | 1                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   | 0        | 1       | 1       | Stream 27          | 1  | 0  | 0  | 0  | 0      | 0     | 0       | 0               | Ch 128 `            |
| 1                | 1                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   | 1        | 0       | 0       | Stream 28          | 1  | 0  | 0  | 0  | 0      | 0     | 0       | 1               | Ch 129              |
| 1                | 1                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   | 1        | 0       | 1       | Stream 29          |    |    |    |    |        |       |         |                 |                     |
| 1                | 1                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   | 1        | 1       | 0       | Stream 30          | 1  | 1  | 1  | 1  | 1      | 1     | 1       | 0               | Ch 254              |
| 1                | 1                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   | 1        | 1       | 1       | Stream 31          | 1  | 1  | 1  | 1  | 1      | 1     | 1       | 1               | Ch 255 (Note 5)     |
| 3. Cha<br>4. Cha | <ol> <li>Bit A13 must be high for access to data and connection memory positions. Bit A13 must be low for access to registers.</li> <li>Channels 0 to 31 are used when serial stream is at 2Mb/s.</li> <li>Channels 0 to 63 are used when serial stream is at 4Mb/s</li> <li>Channels 0 to 127 are used when serial stream is at 8Mb/s</li> <li>Channels 0 to 255 are used when serial stream is at 16Mb/s</li> </ol> |     |          |         |         |                    |    |    |    |    |        |       |         |                 |                     |

#### Memory Mapping

The address bus on the microprocessor interface selects the internal registers and memories of the MT90826. If the A13 address input is low, then the registers are addressed by A12 to A0 according to Table 3.

If the A13 is high, the remaining address input lines are used to select location in the data or connection memory depending upon MS bit in the control register. For data memory reads, the serial inputs are selected. For connection memory writes, the serial outputs are selected. The destination stream address bits and channel address bits are defined by A12 to A8 and A7 to A0 respectively. See Table 4 for the memory address mapping.

The control register controls all the major functions of the device. It selects the internal memory locations that specify the input and output channels selected for switching and should be programmed immediately after system power-up to establish the desired switching configuration as explained in the Frame Alignment Timing & Switching Configurations sections.

The data in the control register consists of the block programming bits (BPD0-2), the block programming enable bit (BPE), the memory block programming bit (MBP), the memory select bits (MS), the start frame evaluation bit (SFE), the output stand by bit (OSB), the wide frame pulse control bit (WFP) and the data rate selection bits (DR0-2). See Table 5 for the description of the control register bits.

#### **Connection Memory Control**

The connection memory controls the switching configuration of the device. Locations in the connection memory are associated with particular STo output streams.

The TM0 and TM1 bits of each connection memory location allows the selection of the variable throughput delay mode, the constant throughput delay mode, the message mode or the bit error test mode for all STo channels.

When the variable or constant throughput delay mode is selected, (TM1=0/1, TM0=0), the contents of the stream address bit (SAB) and the channel address bit (CAB) of the connection memory defines the source information (stream and channel) of the timeslot that will be switched to the STo streams.

When the message mode is selected, (TM1=0, TM0=1), only the lower half byte (8 least significant bits) of the connection memory is transferred to the associated STo output channel.

When the bit error test mode is selected, (TM1=1, TM0=1), the pseudo random pattern will be output on the associated STo output channel.

See Table 17 for the description of the connection memory bits.

#### **DTA** Data Transfer Acknowledgment Pin

The  $\overline{\text{DTA}}$  pin is driven LOW by internal logic, to indicate to the CPU that a data bus transfer is complete. When the read or write cycle ends, this pin changes to the high-impedance state.

#### Initialization of the MT90826

During power up, the  $\overline{\text{TRST}}$  pin should be pulsed low, or held low continuously, to ensure that the MT90826 is in the normal functional mode. A 5K pull-down resistor can be connected to the  $\overline{\text{TRST}}$  pin so that the device will not enter the JTAG test mode during power up.

After power up, the contents of the connection memory can be in any state. The ODE pin should be held low after power up to keep all serial outputs in a high impedance state until the microprocessor has initialized the switching matrix. This procedure prevents two serial outputs from driving the same stream simultaneously.

During the microprocessor initialization routine, the microprocessor should program the desired active paths through the switch. Users can also consider using the memory block programming feature to quickly initialize the OE, TMO and TM1 bits in the connection memory. When this process is complete, the microprocessor controlling the matrices can either bring the ODE pin high or enable the OSB bit in control register to relinquish the high impedance state control.

# MT90826 CMOS

|       | Read/Write Add<br>Reset Value: | Iress: 0000 <sub>H</sub> ,<br>0000 <sub>H</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |
|-------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| 1     | 5 14 13                        | 12 11 10 9 8 7 6 5 4 3 2 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |
| BPD   | D2 BPD1 BPD0                   | 0 CPLL CBER SBER SFE 0 BPE MBP MS OSB DR2 DR1 DR0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |
|       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |
| Bit   | Name                           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |
| 15-13 | BPD2-0                         | <b>Block Programming Data.</b> These bits carry the value to be loaded into the connection memory block whenever the memory block programming feature is activated. After the MBP bit is set to 1 and the BPE bit is set to 1, the contents of the bits BPD2- 0 are loaded into bit 15 to bit 13 of the connection memory. Bit 12 to bit 0 of the connection memory are set to 0.                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |
| 12    | Unused                         | Must be zero for normal operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |
| 11    | CPLL                           | PLL Input Frequency Select. When zero, the CLK input is 16.384MHz. When 1, the CLK input is 8.192MHz or 16.384MHz. See Table 6 for the usage of the clock frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |
| 10    | CBER                           | <b>Clear Bit Error Rate Register</b> . A zero to one transition in this bit resets the internal bit error counter and the bit error count register to zero.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |
| 9     | SBER                           | <b>Start Bit Error Rate Test</b> . A zero to one transition in this bit starts the bit error rate test. The bit error test result is kept in the bit error count register. A one to zero transition stops the bit error rate test and the internal bit error counter.                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
| 8     | SFE                            | <b>Start Frame Evaluation.</b> A zero to one transition in this bit starts the frame evaluation procedure. When the CFE bit in the frame alignement (FAR) register changes from zero to one, the evaluation procedure stops. To start another frame evaluation cycle, set this bit to zero.                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |
| 7     | Unused                         | Must be zero for normal operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |
| 6     | BPE                            | <b>Begin Block programming Enable.</b> A zero to one transition of this bit enables the memory block programming function. The BPE and BPD2-0 bits have to be defined in the same write operation. Once the BPE bit is set high, the device requires two frames to complete the block programming. After the programming function has finished, the BPE bit returns to zero to indicate the operation is completed. When the BPE = 1, the BPE or MBP can be set to 0 to abort the programming operation.<br>When BPE = 1, the other bits in the control register must not be changed for two frames to ensure proper operation. |  |  |  |  |  |  |  |  |  |  |
| 5     | MBP                            | <b>Memory Block Program.</b> When 1, the connection memory block programming feature is ready to program Bit13 to Bit15 of the connection memory. When 0, feature is disabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
| 4     | MS                             | <ul> <li>Memory Select. When 0, connection memory is selected for read or write operations. When 1, the data memory is selected for read operations and connection memory is selected for write operations. (No microprocessor write operation is allowed for the data memory.)</li> <li>For data memory read operations, two consecutive microprocessor cycles are required. The read address should remain the same for the two consecutive read cycles. The data memory content from the first read cycle should be ignored. The correct data memory content will be</li> </ul>                                              |  |  |  |  |  |  |  |  |  |  |
|       |                                | presented to the data bus on the second read cycle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |
| 3     | OSB                            | Output Stand By. This bit controls the device output drivers.OSB bitODE pinOE bitSTo0 - 31011Enable101Enable111Enable00XHigh impedance stateXX0Per-channel high impedance                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |
| 2 - 0 | DR2-0                          | <b>Data Rate Select.</b> Input/Output data rate selection. See next table (Table 6) for detailed programming.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |

| DR2 | DR1 | DR0 | Serial Interface Mode | CLK<br>(CPLL=0) | CLK<br>(CPLL=1) |
|-----|-----|-----|-----------------------|-----------------|-----------------|
| 0   | 0   | 0   | 8 Mb/s                |                 |                 |
| 0   | 0   | 1   | 16 Mb/s               |                 |                 |
| 0   | 1   | 0   | 4 and 8 Mb/s          | 16.384MHz       | 16.384MHz       |
| 0   | 1   | 1   | 16 and 8 Mb/s         |                 |                 |
| 1   | 0   | 0   | 4 Mb/s                | 16.384MHz       | 8.192MHz        |
| 1   | 0   | 1   | 2 and 4 Mb/s          |                 |                 |
| 1   | 1   | 0   | 2 Mb/s                | 16.384MHz       | 8.192MHz        |

 Table 6 - Serial Data Rate Selections and External Clock Rates

| Re    | ad/Write Ad | dress: | 0001 <sub>H</sub> ,                                |                                                                                                                                                                                                                                        |                              |                              |                                                             |                                                                     |                                          |                     |                   |                                 |                                   |  |
|-------|-------------|--------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------|---------------------|-------------------|---------------------------------|-----------------------------------|--|
| Re    | set Value:  |        | 0000 <sub>H</sub> .                                | 0000 <sub>H</sub> .                                                                                                                                                                                                                    |                              |                              |                                                             |                                                                     |                                          |                     |                   |                                 |                                   |  |
| 15    | 14 13       | 12     | 11 10                                              | 9                                                                                                                                                                                                                                      | 8                            | 7                            | 6                                                           | 5                                                                   | 4                                        | 3                   | 2                 | 1                               | 0                                 |  |
| FE4   | FE3 FE2     | FE1    | FE0 CFE                                            | FD9                                                                                                                                                                                                                                    | FD8                          | FD7                          | FD6                                                         | FD5                                                                 | FD4                                      | FD3                 | FD2               | FD1                             | FD0                               |  |
| Bit   | Nam         | е      |                                                    |                                                                                                                                                                                                                                        |                              |                              | De                                                          | script                                                              | ion                                      |                     |                   |                                 |                                   |  |
| 15-11 | FE4-        | -0     |                                                    | <b>Frame Evaluation Input Select.</b> The binary value expressed in these bits refers to the frame evaluation inputs, FEi0 to FEi31.                                                                                                   |                              |                              |                                                             |                                                                     |                                          |                     |                   |                                 |                                   |  |
| 10    | CFE         | Ξ      | completed                                          | <b>Complete Frame Evaluation.</b> When CFE = 1, the frame evaluation is completed and FD9 to FD0 bits contains a valid frame alignment offset. This bit is reset to zero, when SFE bit in the control register is changed from 1 to 0. |                              |                              |                                                             |                                                                     |                                          |                     |                   |                                 |                                   |  |
| 9     | FD9         | )      | master clo<br>allows the<br>See Figure<br>Internal | ck high<br>measu<br>e 4 for d                                                                                                                                                                                                          | n phase<br>iremer<br>clock s | e (FD9<br>it reso<br>ignal a | $\tilde{0} = 1$ ) of<br>lution the<br>alignment<br>Op<br>4N | or durir<br>to 1/2 i<br>ent.<br><u>eration</u><br>2Mb/s<br>/lb/s, 2 | ng the<br>nterna<br><u>Mode</u><br>&4Mb/ | low ph<br>I mast    | ase (F<br>er cloo | <sup>-</sup> D9 – 0<br>ck cycle | he internal<br>)). This bit<br>e. |  |
| 8-0   | FD8-        | 0      | Frame De<br>measured<br>the contro                 | lay Bit<br>input o                                                                                                                                                                                                                     | offset v                     | binary<br>alue. T            | / value<br>These                                            | bits are                                                            | ssed i<br>e reset                        | n these<br>t to zer | e bits i<br>o whe | refers ten the S                |                                   |  |

Table 7 - Frame Alignment (FAR) Register Bits

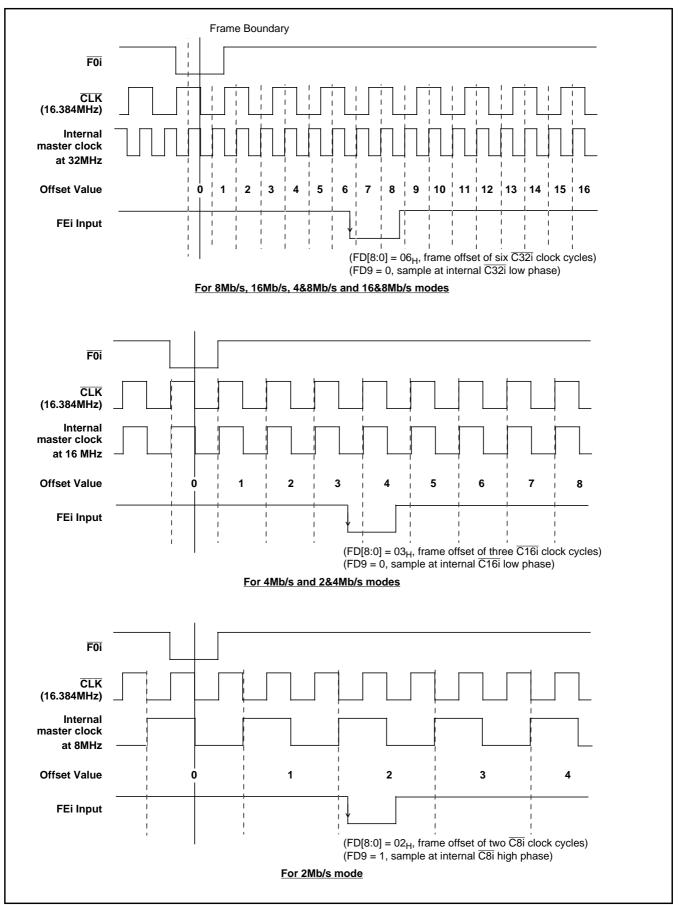


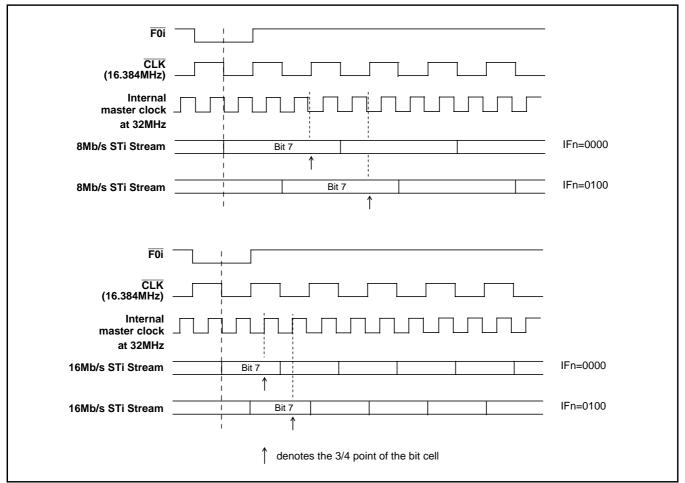

Figure 4 - Example for Frame Alignment Measurement

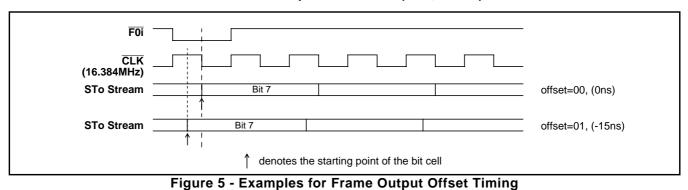
| Read/Write Add<br>Reset value:       | ress:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 04 <sub>H</sub> fo<br>06 <sub>H</sub> fo<br>08 <sub>H</sub> fo | or DOS0 re<br>or DOS2 re<br>or DOS4 re<br>or DOS6 re<br>t for all DO |           | 05 <sub>H</sub> for<br>07 <sub>H</sub> for | DOS:<br>DOS | 1 regist<br>3 regist<br>5 regist<br>7 regist | er,<br>er, |           |           |           |                       |  |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|-----------|--------------------------------------------|-------------|----------------------------------------------|------------|-----------|-----------|-----------|-----------------------|--|
|                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |                                                                      | -         | _                                          |             | _                                            |            |           |           |           |                       |  |
| 15 14 13                             | 12<br>IF30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                | 10 9<br>F22 IF21                                                     | 8<br>IF20 | /                                          | 6           | 5<br>IF11                                    | 4          | 3<br>IF03 | 2<br>IF02 | 1<br>IF01 | 0<br>IF00             |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |                                                                      |           |                                            |             |                                              |            |           |           |           |                       |  |
|                                      | DOS0 register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |                                                                      |           |                                            |             |                                              |            |           |           |           |                       |  |
| IF73 IF72 IF71                       | IF73         IF71         IF63         IF62         IF61         IF60         IF53         IF52         IF51         IF43         IF42         IF41         IF40                                                                                                                                                                                                                                                                                                                                      |                                                                |                                                                      |           |                                            |             |                                              |            |           |           |           |                       |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                | 0                                                                    | 00S1 I    | registe                                    | er          |                                              |            |           |           |           |                       |  |
| IF113 IF112 IF111                    | IF113 IF112 IF111 IF110 IF103 IF102 IF101 IF100 IF93 IF92 IF91 IF90 IF83 IF82 IF81 IF80                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                                      |           |                                            |             |                                              |            |           |           |           |                       |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |                                                                      | )OS2 I    | egiste                                     | er          |                                              |            |           |           |           |                       |  |
| IF153 IF152 IF151                    | IF150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IF143                                                          | F142 IF141                                                           | IF140     | IF133                                      | IF132       | IF131                                        | IF130      | IF123     | IF122     | IF121     | IF120                 |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                | C                                                                    | 0OS3 r    | egiste                                     | er          |                                              |            |           |           |           |                       |  |
| IF193 IF192 IF191                    | IF190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IF183 IF                                                       | -182 IF181                                                           | IF180     | IF173                                      | IF172       | IF171                                        | IF170      | IF163     | IF162     | IF161     | IF160                 |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                | C                                                                    | 0OS4 r    | egiste                                     | er          |                                              |            |           |           |           |                       |  |
| IF233 IF232 IF231                    | IF230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IF223 IF                                                       | -222 IF221                                                           | IF220     | IF213                                      | IF212       | IF211                                        | IF210      | IF203     | IF202     | IF201     | IF200                 |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                | C                                                                    | 0OS5 r    | egiste                                     | er          |                                              |            |           |           |           |                       |  |
| IF273 IF272 IF271                    | IF270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IF263 IF                                                       | 262 IF261                                                            | IF260     | IF253                                      | IF252       | IF251                                        | IF250      | IF243     | IF242     | IF241     | IF240                 |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                | C                                                                    | 0OS6 r    | egiste                                     | er          |                                              |            |           |           |           |                       |  |
| IF313 IF312 IF311                    | IF310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IF303 IF                                                       | -302 IF301                                                           | IF300     | IF293                                      | IF292       | IF291                                        | IF290      | IF283     | IF282     | IF281     | IF280                 |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                | C                                                                    | 00S7 r    | registe                                    | er          |                                              |            |           |           |           |                       |  |
| Name<br>(Note 1)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |                                                                      |           |                                            | Descri      | ption                                        |            |           |           |           |                       |  |
| IFn3-0<br>Note 1: n denotes a STi st | Input Offset Bits 3,2,1 & 0. These four bits define how long the serial interface receiver takes to recognize and store bit 0 from the STi pin: i.e., to start a new frame. The input frame offset can be selected to +2.25 clock periods from the point where the external frame pulse input signal is applied to the F0i inputs of the device. See Table 9. When the STi pin has a stream rate of 2.048Mb/s, the input offset can not be adjusted and the input offset bits have to be set to zero. |                                                                |                                                                      |           |                                            |             |                                              |            |           |           |           | The input<br>external |  |

Table 8 - Frame Delay Offset Register (DOS) Bits

| Input Stream<br>Offset                      | Measurement Result from<br>Frame Delay Bits |     |     |     | Corresponding Input Offset Bits |      |      |      |
|---------------------------------------------|---------------------------------------------|-----|-----|-----|---------------------------------|------|------|------|
| Unset                                       | FD9                                         | FD2 | FD1 | FD0 | IFn3                            | IFn2 | IFn1 | IFn0 |
| No internal master clock shift<br>(Default) | 1                                           | 0   | 0   | 0   | 0                               | 0    | 0    | 0    |
| + 1/4 internal master clock shift           | 0                                           | 0   | 0   | 0   | 0                               | 0    | 0    | 1    |
| + 1/2 internal master clock shift           | 1                                           | 0   | 0   | 1   | 0                               | 0    | 1    | 0    |
| + 3/4 internal master clock shift           | 0                                           | 0   | 0   | 1   | 0                               | 0    | 1    | 1    |
| + 1.00 internal master clock shift          | 1                                           | 0   | 1   | 0   | 0                               | 1    | 0    | 0    |
| + 1.25 internal master clock shift          | 0                                           | 0   | 1   | 0   | 0                               | 1    | 0    | 1    |
| + 1.50 internal master clock shift          | 1                                           | 0   | 1   | 1   | 0                               | 1    | 1    | 0    |
| + 1.75 internal master clock shift          | 0                                           | 0   | 1   | 1   | 0                               | 1    | 1    | 1    |
| + 2.00 internal master clock shift          | 1                                           | 1   | 0   | 0   | 1                               | 0    | 0    | 0    |
| + 2.25 internal master clock shift          | 0                                           | 1   | 0   | 0   | 1                               | 0    | 0    | 1    |

Table 9 - Frame delay Bits (FD9, FD2-0) and Input Offset Bits (IFn3-0)





Figure 4 - Examples for Input Offset Delay Timing

| Read/Write Addre  | ss: 000A <sub>H</sub> for FOR0 register,<br>000B <sub>H</sub> for FOR1 register,<br>000C <sub>H</sub> for FOR2 register,                                                                                                           |  |  |  |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                   | 000D <sub>H</sub> for FOR3 register,                                                                                                                                                                                               |  |  |  |  |  |  |
| Reset value:      | 0000 <sub>H</sub> for all FOR registers.                                                                                                                                                                                           |  |  |  |  |  |  |
| 15 14 13          | 12 11 10 9 8 7 6 5 4 3 2 1 0                                                                                                                                                                                                       |  |  |  |  |  |  |
| OF71 OF70 OF61    | OF60 OF51 OF50 OF41 OF40 OF31 OF30 OF21 OF20 OF11 OF10 OF01 OF00                                                                                                                                                                   |  |  |  |  |  |  |
|                   | FOR0 register                                                                                                                                                                                                                      |  |  |  |  |  |  |
| OF151 OF150 OF141 | OF140 OF131 OF130 OF121 OF120 OF111 OF110 OF101 OF100 OF91 OF90 OF81 OF80                                                                                                                                                          |  |  |  |  |  |  |
|                   | FOR1 register                                                                                                                                                                                                                      |  |  |  |  |  |  |
| OF231 OF230 OF221 | OF220 OF211 OF210 OF201 OF200 OF191 OF190 OF181 OF180 O171 OF170 OF161 OF160                                                                                                                                                       |  |  |  |  |  |  |
|                   | FOR2 register                                                                                                                                                                                                                      |  |  |  |  |  |  |
| OF311 OF310 OF301 | OF300 OF291 OF290 OF281 OF280 OF271 OF270 OF261 OF260 OF251 OF250 OF241 OF240                                                                                                                                                      |  |  |  |  |  |  |
|                   | FOR3 register                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Name<br>(Note 1)  | Description                                                                                                                                                                                                                        |  |  |  |  |  |  |
| OFn1, OFn0        | Output Offset Bits 1 - 0. These two bits define how soon the serial interface transmitter                                                                                                                                          |  |  |  |  |  |  |
| (n = 0 to 31)     | output the bit 0 from the STo pin. The output stream offset can be selected to -45ns from the point where the external frame pulse input signal is applied to the $\overline{F0i}$ inputs of the device. See Table 11 and Figure 5 |  |  |  |  |  |  |

#### Table 10 - Frame Output Offset (FOR) Register Bits

| Corresponding O | utput Offset Bits | Output Stream Offset for<br>8Mb/s, 16Mb/s, 4&8Mb/s and 16&8Mb/s modes |  |  |  |  |  |  |
|-----------------|-------------------|-----------------------------------------------------------------------|--|--|--|--|--|--|
| OFn1            | OFn0              | (Not available for 2Mb/s, 4Mb/s and 2&4 Mb/s modes)                   |  |  |  |  |  |  |
| 0               | 0                 | Ons                                                                   |  |  |  |  |  |  |
| 0               | 1                 | -15ns                                                                 |  |  |  |  |  |  |
| 1               | 0                 | -30ns                                                                 |  |  |  |  |  |  |
| 1               | 1                 | -45ns                                                                 |  |  |  |  |  |  |

#### Table 11 - Output Offset Bits (FD9, FD2-0)



|        | d/Write Ac<br>et value: | ddress: | 0011<br>0000 |            | SR registe                     | r,   |         |        |         |      |      |      |                      |
|--------|-------------------------|---------|--------------|------------|--------------------------------|------|---------|--------|---------|------|------|------|----------------------|
| 15     | 14 1                    | 3 12    | 11           | 10         | 9 8                            | 7    | 6       | 5      | 4       | 3    | 2    | 1    | 0                    |
| 0      | 0 (                     | BSA4    | BSA3         | BSA2 B     | 3SA1 BSA0                      | BCA7 | BCA6    | BCA5   | BCA4    | BCA3 | BCA2 | BCA1 | BCA0                 |
| Bit    | Na                      | me      | Description  |            |                                |      |         |        |         |      |      |      |                      |
|        |                         |         |              |            |                                |      | De      | script |         |      |      |      |                      |
| 12 - 8 | BSA4                    | - BSA0  |              | e bits ref | <b>tream Ad</b><br>fers to the |      | Bits. T | he nun | nber ex | •    |      |      | otation on<br>random |

Table 12 - Bit Error Input Selection (BISR) Register Bits

|        | d Address:<br>et value: |       | 0012 <sub>H</sub> for BECR register,<br>0000 <sub>H</sub> |         |          |         |         |         |         |         |       |         |     |
|--------|-------------------------|-------|-----------------------------------------------------------|---------|----------|---------|---------|---------|---------|---------|-------|---------|-----|
| 15     | 14 13                   | 12    | 11 10                                                     | 9       | 8        | 7       | 6       | 5       | 4       | 3       | 2     | 1       | 0   |
| BER15  | BER14 BER13             | BER12 | BER11 BER1                                                | BER9    | BER8     | BER7    | BER6    | BER5    | BER4    | WR3     | WR2   | WR1     | WR0 |
| Bit    | Name                    | 9     |                                                           |         |          |         | Des     | scripti | on      |         |       |         |     |
| 15 - 0 | BER15 - B               | ER0   | Bit Error<br>bits refers<br>programn                      | to the  | bit erro | or coun | ts. The | e regis | ter con | tent ca | an be | cleared |     |
|        |                         | Та    | able 13 - B                                               | it Erro | r Cou    | nt (BE  |         | onist   | or Bite |         |       |         |     |

| 15    | 14 13 12<br>TM0 OE SAB 5 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|-------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Bit   | Name                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| 15-14 | TM1-0                    | Mode Select Bits. <u>TM1</u> <u>TM0</u> <u>Mode Selection</u> 0       0       Variable Throughput Delay mode         1       0       Constant Throughput Delay mode         0       1       Message mode; the contents of the connection memory are output on the corresponding output channel and stream. Only the lower byte (bit 7 - bit 0) will be output to the ST-BUS output pins.         1       1       Bit Error Test mode; the pseudo random test pattern will be output on the output channel and stream associated with this location. |  |  |  |  |  |
| 13    | OE                       | <b>Output Enable.</b> This bit enables the drivers of STo pins on a per-channel basis. When 1, the STo output driver functions normally. When 0, the STo output driver is in a high-impedance state.                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 12-8  | SAB4-0                   | <b>Source Stream Address Bits.</b> The binary value is the number of the data stream for the source of the connection.                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| 7-0   | CAB7-0                   | <b>Source Channel Address Bits.</b> The binary value is the number of the channel for the source of the connection. When the message mode is enabled, these entire 8 bits are output on the output channel and stream associated with this location.                                                                                                                                                                                                                                                                                                |  |  |  |  |  |

Table 14 - Connection Memory Bits

| Data Rate        | SAB4 to SAB0 Bits Used to Determine the Source Stream of the connection | CAB Bits Used to Determine the Source<br>Channel of the Connection |
|------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------|
| 8 Mb/s           | SAB4 to SAB0 (STi0 to STi31)                                            | CAB6 to CAB0 (128 channel/frame)                                   |
| 16Mb/s           | SAB3 to SAB0 (STi0 to STi15)                                            | CAB7 to CAB0 (256 channel/frame)                                   |
| 4 Mb/s & 8 Mb/s  | SAB4 to SAB0 (STi0 to STi31)                                            | CAB6 to CAB0 (64 or 128 channel/frame)                             |
| 16 Mb/s & 8 Mb/s | SAB3 to SAB0 (STi0 to STi19)                                            | CAB7 to CAB0 (128 or 256 channel/frame)                            |
| 4 Mb/s           | SAB4 to SAB0 (STi0 to STi31)                                            | CAB5 to CAB0 (64 channel/frame)                                    |
| 2 Mb/s & 4 Mb/s  | SAB4 to SAB0 (STi0 to STi31)                                            | CAB5 to CAB0 (32 or 64 channel/frame)                              |
| 2 Mb/s           | SAB4 to SAB0 (STi0 to STi31)                                            | CAB4 to CAB0 (32 channel/frame)                                    |

 Table 15 - SAB and CAB Bits Programming for various interface mode

#### **JTAG Support**

The MT90826 JTAG interface conforms to the Boundary-Scan standard IEEE1149.1. This standard specifies a design-for-testability technique called Boundary-Scan test (BST). The operation of the boundary-scan circuitry is controlled by an external test access port (TAP) Controller.

#### Test Access Port (TAP)

The Test Access Port (TAP) provides access to the many test functions of the MT90826. It consists of three input pins and one output pin. The following pins are from the TAP.

- Test Clock Input (TCK) TCK provides the clock for the test logic. The TCK does not interfere with any on-chip clock and thus remain independent. The TCK permits shifting of test data into or out of the Boundary-Scan register cells concurrently with the operation of the device and without interfering with the on-chip logic.
- Test Mode Select Input (TMS) The logic signals received at the TMS input are interpreted by the TAP Controller to control the test operations. The TMS signals are sampled at the rising edge of the TCK pulse. This pin is internally pulled to Vdd when it is not driven from an external source.
- Test Data Input (TDI) Serial input data applied to this port is fed either into the instruction register or into a test data register, depending on the sequence previously applied to the TMS input. Both registers are described in a subsequent section. The received input data is sampled at the rising edge of TCK pulses. This pin is internally pulled to Vdd when it is not driven from an external source.
- Test Data Output (TDO)

Depending on the sequence previously applied to the TMS input, the contents of either the instruction register or data register are serially shifted out towards the TDO. The data out of the TDO is clocked on the falling edge of the TCK pulses. When no data is shifted through the boundary scan cells, the TDO driver is set to a high impedance state.  Test Reset (TRST) Resets the JTAG scan structure. This pin is internally pulled to VDD.

#### **Instruction Register**

In accordance with the IEEE 1149.1 standard, the MT90863 uses public instructions. The JTAG Interface contains a two-bit instruction register. Instructions are serially loaded into the instruction register from the TDI when the TAP Controller is in its shifted-IR state. Subsequently, the instructions are decoded to achieve two basic functions: to select the test data register that may operate while the instruction is current, and to define the serial test data register path, which is used to shift data between TDI and DO during data register scanning.

#### **Test Data Register**

As specified in IEEE 1149.1, the MT90826 JTAG Interface contains three test data registers:

- The Boundary-Scan register The Boundary-Scan register consists of a series of Boundary-Scan cells arranged to form a scan path around the boundary of the MT90863 core logic.
- The Bypass Register The Bypass register is a single stage shift register that provides a one-bit path from TDI to its TDO.
- The Device Identification Register The device identification register is a 32-bit register with the register contain of:

MSB 0000 0000 1000 0010 0110 0001 0100 1011

The LSB bit in the device identification register is the first bit clock out.

The MT90826 scan register contains 165 bits.

### Advanced Information

CMOS **MT90826** 

|                                                                              | Bounda               | ry Scan Bit 0        | to Bit 165                       |
|------------------------------------------------------------------------------|----------------------|----------------------|----------------------------------|
| Device Pin                                                                   | Tri-state<br>Control | Output<br>Scan Cell  | Input<br>Scan Cell               |
| F0i<br>CLK<br>ODE                                                            |                      |                      | 0<br>1<br>2                      |
| STi0<br>STi1<br>STi2<br>STi3<br>STo0<br>STo1<br>STo2<br>STo3                 | 7<br>9<br>11<br>13   | 8<br>10<br>12<br>14  | 3<br>4<br>5<br>6                 |
| STi4<br>STi5<br>STi6<br>STi7<br>STo4<br>STo5<br>STo6<br>STo7<br>STi8<br>STi9 | 19<br>21<br>23<br>25 | 20<br>22<br>24<br>26 | 15<br>16<br>17<br>18<br>27<br>28 |
| STi10<br>STi11<br>STo8<br>STo9<br>STo10<br>STo11<br>STi12<br>STi13           | 31<br>33<br>35<br>37 | 32<br>34<br>36<br>38 | 29<br>30<br>39<br>40             |
| STi14<br>STi15<br>STo12<br>STo13<br>STo14<br>STo15<br>STi16<br>STi17         | 43<br>45<br>47<br>49 | 44<br>46<br>48<br>50 | 41<br>42<br>51<br>52             |
| STi18<br>STi19<br>STo16<br>STo17<br>STo18<br>STo19<br>STi20                  | 55<br>57<br>69<br>61 | 56<br>58<br>60<br>62 | 53<br>54<br>63                   |
| STi21<br>STi22<br>STi23<br>STo20<br>STo21<br>STo22<br>STo23<br>STi24         | 67<br>69<br>71<br>73 | 68<br>70<br>72<br>74 | 64<br>65<br>66<br>75             |
| STi25<br>STi26<br>STi27<br>STo24<br>STo25<br>STo26<br>STo27                  | 79<br>81<br>83<br>85 | 80<br>82<br>84<br>86 | 76<br>77<br>78                   |

|                                                                                                    | Boundary Scan B                                                                                             |                                                                                                              |                                                                                                              |  |  |  |  |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Device Pin                                                                                         | Tri-state<br>Control                                                                                        | Output<br>Scan Cell                                                                                          | Input<br>Scan Cell                                                                                           |  |  |  |  |
| STi28<br>STi29<br>STi30<br>STi31<br>STo28<br>ST029<br>ST030<br>STo31                               | 91<br>93<br>95<br>97                                                                                        | 92<br>94<br>96<br>98                                                                                         | 87<br>88<br>89<br>90                                                                                         |  |  |  |  |
| D0<br>D1<br>D2<br>D3<br>D4<br>D5<br>D6<br>D7<br>D8<br>D9<br>D10<br>D11<br>D12<br>D13<br>D14<br>D15 | 99<br>102<br>105<br>108<br>111<br>114<br>117<br>120<br>123<br>126<br>129<br>132<br>135<br>138<br>141<br>144 | 100<br>103<br>106<br>109<br>112<br>115<br>118<br>121<br>124<br>127<br>130<br>133<br>136<br>139<br>142<br>145 | 101<br>104<br>107<br>110<br>113<br>116<br>119<br>122<br>125<br>128<br>131<br>134<br>137<br>140<br>143<br>146 |  |  |  |  |
| DTA<br>CS<br>R/W<br>DS                                                                             |                                                                                                             | 147                                                                                                          | 148<br>149<br>150                                                                                            |  |  |  |  |
| A0<br>A1<br>A2<br>A3<br>A4<br>A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>RESETb     |                                                                                                             |                                                                                                              | 151<br>152<br>153<br>154<br>155<br>156<br>157<br>158<br>159<br>160<br>161<br>162<br>163<br>164<br>165        |  |  |  |  |

#### **Absolute Maximum Ratings\***

|   | Parameter                                                     | Symbol          | Min                   | Max                   | Units |
|---|---------------------------------------------------------------|-----------------|-----------------------|-----------------------|-------|
| 1 | Supply Voltage                                                | V <sub>DD</sub> | -0.3                  | 5.0                   | V     |
| 2 | Voltage on any 3.3V tolerant pin I/O (other than supply pins) | VI              | V <sub>SS</sub> - 0.3 | V <sub>DD</sub> + 0.3 | V     |
| 3 | Voltage on any 5V tolerant pin I/O (other than supply pins)   | VI              | V <sub>SS</sub> - 0.3 | 5.0                   | V     |
| 4 | Continuous Current at digital outputs                         | Ι <sub>ο</sub>  |                       | 20                    | mA    |
| 5 | Package power dissipation                                     | PD              |                       | 1                     | W     |
| 6 | Storage temperature                                           | Τ <sub>S</sub>  | - 65                  | +125                  | °C    |

\* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied

#### Recommended Operating Conditions - Voltages are with respect to ground (Vss) unless otherwise stated.

|   | Characteristics                          | Sym             | Min             | Тур | Max             | Units | Test Conditions |
|---|------------------------------------------|-----------------|-----------------|-----|-----------------|-------|-----------------|
| 1 | Operating Temperature                    | T <sub>OP</sub> | -40             |     | +85             | °C    |                 |
| 2 | Positive Supply                          | V <sub>DD</sub> | 3.0             |     | 3.6             | V     |                 |
| 3 | Input High Voltage                       | V <sub>IH</sub> | $0.7V_{DD}$     |     | V <sub>DD</sub> | V     |                 |
| 4 | Input High Voltage on 5V Tolerant Inputs | V <sub>IH</sub> |                 |     | 5.5             | V     |                 |
| 5 | Input Low Voltage                        | V <sub>IL</sub> | V <sub>SS</sub> |     | $0.3V_{DD}$     | V     |                 |

#### DC Electrical Characteristics - Voltages are with respect to ground (Vss) unless otherwise stated.

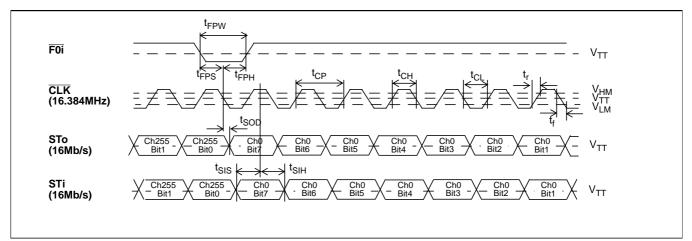
|   |             | Characteristics                                                            | Sym                                | Min                | Тур | Max         | Units    | Test Conditions                     |
|---|-------------|----------------------------------------------------------------------------|------------------------------------|--------------------|-----|-------------|----------|-------------------------------------|
| 1 |             | Supply Current                                                             | I <sub>DD</sub>                    |                    | 64  | 100         | mA       | Output unloaded                     |
| 2 |             | Input High Voltage                                                         | V <sub>IH</sub>                    | 0.7V <sub>DD</sub> |     |             | V        |                                     |
| 3 | N<br>P      | Input Low Voltage                                                          | V <sub>IL</sub>                    |                    |     | $0.3V_{DD}$ | V        |                                     |
| 4 | U<br>U<br>S | Input Leakage (input pins)<br>Input Leakage (with pull-up<br>or pull-down) | I <sub>IL</sub><br>I <sub>BL</sub> |                    |     | 15<br>50    | μΑ<br>μΑ | 0≤ <v≤v<sub>DD See Note 1</v≤v<sub> |
| 5 |             | Input Pin Capacitance                                                      | Cl                                 |                    |     | 10          | pF       |                                     |
| 6 | O<br>U      | Output High Voltage                                                        | V <sub>OH</sub>                    | 0.8V <sub>DD</sub> |     |             | V        | I <sub>OH</sub> = 10mA              |
| 7 | T           | Output Low Voltage                                                         | V <sub>OL</sub>                    |                    |     | 0.4         | V        | I <sub>OL</sub> = 10mA              |
| 8 | U<br>U<br>T | High Impedance Leakage                                                     | I <sub>OZ</sub>                    |                    |     | 5           | μΑ       | 0 < V < V <sub>DD</sub> See Note 1  |
| 9 | S           | Output Pin Capacitance                                                     | CO                                 |                    |     | 10          | pF       |                                     |

Note:

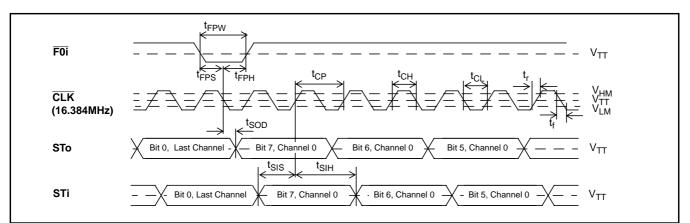
1. Maximum leakage on pins (output or I/O pins in high impedance state) is over an applied voltage (V)

### AC Electrical Characteristics - Timing Parameter Measurement Voltage Levels

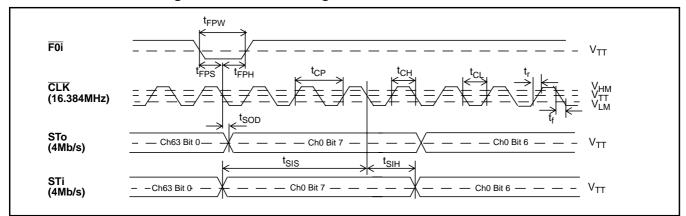
|   | Characteristics                       |                 | Level              | Units | Conditions |
|---|---------------------------------------|-----------------|--------------------|-------|------------|
| 1 | CMOS Threshold Voltage                | V <sub>TT</sub> | 0.5V <sub>DD</sub> | V     |            |
| 2 | CMOS Rise/Fall Threshold Voltage High | V <sub>HM</sub> | 0.7V <sub>DD</sub> | V     |            |
| 3 | CMOS Rise/Fall Threshold Voltage Low  | V <sub>LM</sub> | 0.3V <sub>DD</sub> | V     |            |


|    | Characteristic                            | Sym                             | Min | Тур | Max | Units | CLK       |
|----|-------------------------------------------|---------------------------------|-----|-----|-----|-------|-----------|
| 1  | Frame pulse width                         | t <sub>FPW</sub>                | 55  |     | 65  | ns    |           |
| 2  | Frame Pulse Setup time before CLK falling | t <sub>FPS</sub>                | 5   |     |     | ns    | 16.384MHz |
| 3  | Frame Pulse Hold Time from CLK falling    | t <sub>FPH</sub>                | 10  |     |     | ns    |           |
| 4  | CLK Period                                | t <sub>CP</sub>                 | 55  |     | 70  | ns    |           |
| 5  | CLK Pulse Width High                      | t <sub>CH</sub>                 | 20  |     | 40  | ns    |           |
| 6  | CLK Pulse Width Low                       | t <sub>CL</sub>                 | 20  |     | 40  | ns    |           |
| 7  | Frame pulse width                         | t <sub>FPW8</sub>               | 115 |     | 145 | ns    | 8.192MHz  |
| 8  | Frame Pulse Setup time before CLK falling | t <sub>FPS8</sub>               | 5   |     |     | ns    |           |
| 9  | Frame Pulse Hold Time from CLK falling    | t <sub>FPH8</sub>               | 10  |     |     | ns    |           |
| 10 | CLK Period                                | t <sub>CP8</sub>                | 110 |     | 150 | ns    |           |
| 11 | CLK Pulse Width High                      | t <sub>CH8</sub>                | 50  |     | 75  | ns    |           |
| 12 | CLK Pulse Width Low                       | t <sub>CL8</sub>                | 50  |     | 75  | ns    |           |
| 13 | Clock Rise/Fall Time                      | t <sub>r</sub> , t <sub>f</sub> | -10 |     | +10 | ns    |           |

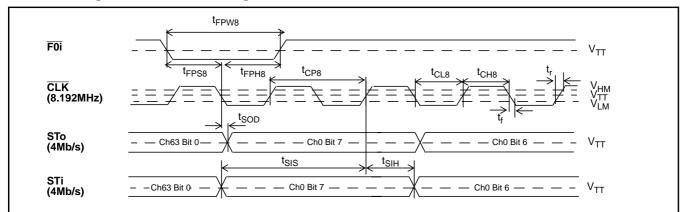
### AC Electrical Characteristics - Frame Pulse and CLK


#### **AC Electrical Characteristics - Serial Streams for ST-BUS**

|   | Characteristic                                     | Sym              | Min     | Тур | Max      | Units | Test Conditions                                          |
|---|----------------------------------------------------|------------------|---------|-----|----------|-------|----------------------------------------------------------|
| 1 | STi Set-up Time                                    | t <sub>SIS</sub> | 0       |     |          | ns    |                                                          |
| 2 | STi Hold Time                                      | t <sub>SIH</sub> | 8       |     |          | ns    |                                                          |
| 3 | STo Delay - Active to Active                       | t <sub>SOD</sub> | 8<br>11 |     | 30<br>43 | ns    | C <sub>L</sub> =30pF<br>C <sub>L</sub> =200pF            |
| 4 | Output Driver Enable (ODE) Delay                   | <sup>t</sup> ODE |         |     | 35       | ns    | R <sub>L</sub> =1K, C <sub>L</sub> =200pF, See<br>Note 1 |
| 5 | STo delay - Active to High-Z<br>- High-Z to Active | t <sub>ZD</sub>  |         |     | 35       | ns    | R <sub>L</sub> =1K, C <sub>L</sub> =200pF, See<br>Note 1 |


Note:1. High Impedance is measured by pulling to the appropriate rail with RL, with timing corrected to cancel time taken to discharge CL.




### MT90826 CMOS













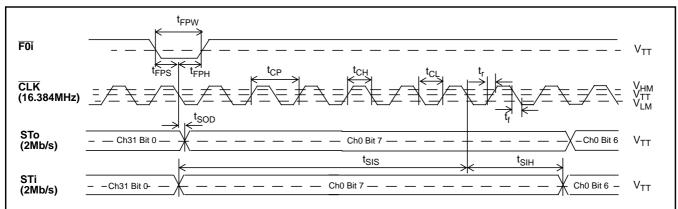



Figure 10 - ST-BUS Timing for Stream rate of 2.048 Mb/s when CLK = 16.384MHz

### CMOS **MT90826**

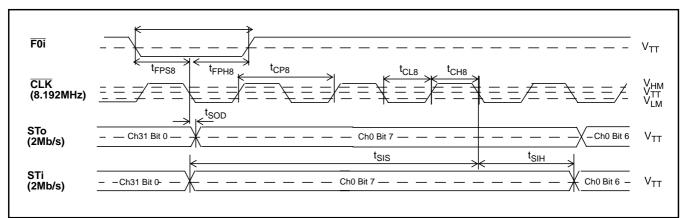



Figure 11 - ST-BUS Timing for Stream rate of 2.048 Mb/s when CLK = 8.192MHzMHz

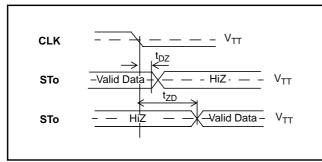



Figure 12 - Serial Output and External Control

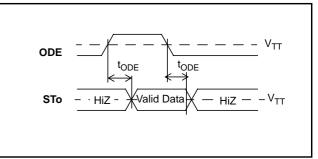



Figure 13 - Output Driver Enable (ODE)

|     | Characteristics                                                                                      | Sym              | Min             | Тур | Max               | Units          | Test Conditions                                      |
|-----|------------------------------------------------------------------------------------------------------|------------------|-----------------|-----|-------------------|----------------|------------------------------------------------------|
| 1   | CS setup from DS falling                                                                             | t <sub>CSS</sub> | 0               |     |                   | ns             |                                                      |
| 2   | $R/\overline{W}$ setup from $\overline{DS}$ falling                                                  | t <sub>RWS</sub> | 10              |     |                   | ns             |                                                      |
| 3   | Address setup from $\overline{\text{DS}}$ falling                                                    | t <sub>ADS</sub> | 2               |     |                   | ns             |                                                      |
| 4   | CS hold after DS rising                                                                              | t <sub>CSH</sub> | 0               |     |                   | ns             |                                                      |
| 5   | $R/\overline{W}$ hold after $\overline{DS}$ rising                                                   | t <sub>RWH</sub> | 2               |     |                   | ns             |                                                      |
| 6   | Address hold after DS rising                                                                         | t <sub>ADH</sub> | 10              |     |                   | ns             |                                                      |
| 7   | Data setup from DTA Low on Read                                                                      | t <sub>DDR</sub> | 27              |     |                   | ns             | C <sub>L</sub> =150pF                                |
| 8   | Data hold on read                                                                                    | t <sub>DHR</sub> | 12              |     | 20                | ns             | C <sub>L</sub> =150pF, R <sub>L</sub> =1K<br>Note 1  |
| 9   | Data setup on write (fast write)                                                                     | t <sub>DSW</sub> | 0               |     |                   | ns             |                                                      |
| 10  | Valid Data Delay on write (slow write)                                                               | t <sub>SWD</sub> | 50<br>85<br>185 |     |                   | ns             |                                                      |
| 11  | Data hold on write                                                                                   | t <sub>DHW</sub> | 13              |     |                   | ns             |                                                      |
| 12a | Acknowledgment Delay: Register RD or WR                                                              | t <sub>AKD</sub> |                 |     | 55                | ns             | C <sub>L</sub> =150pF                                |
| 12b | Acknowledgment Delay: Memory RD or WR<br>16Mb/s, 16&8Mb/s, 8Mb/s, 4&8Mb/s<br>4Mb/s, 4&2Mb/s<br>2Mb/s | t <sub>AKD</sub> |                 |     | 100<br>140<br>240 | ns<br>ns<br>ns | C <sub>L</sub> =150pF                                |
| 13  | Acknowledgment Hold Time                                                                             | t <sub>AKH</sub> |                 |     | 24                | ns             | C <sub>L</sub> =150pF, R <sub>L</sub> =1K,<br>Note 1 |

Note:

1. High Impedance is measured by pulling to the appropriate rail with R<sub>L</sub>, with timing corrected to cancel time taken to discharge C<sub>L</sub>.

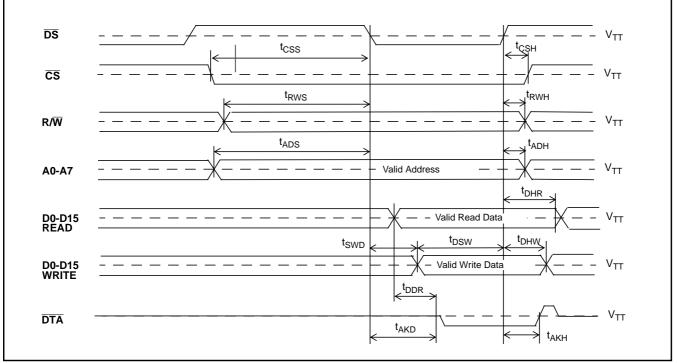
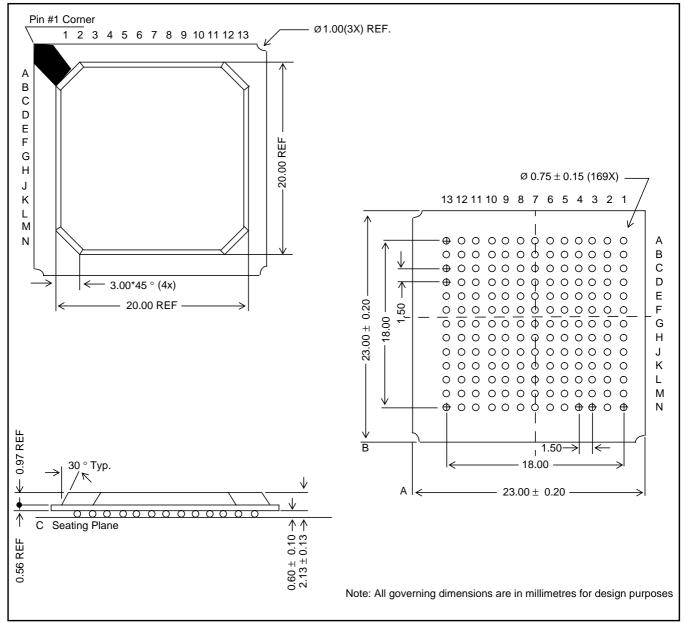
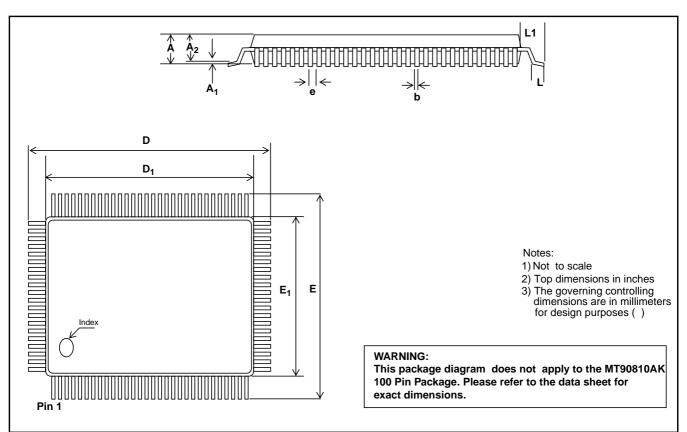





Figure 14 - Motorola Non-Multiplexed Bus Timing



**Ball Gate Array** 

| 120-BGA | 144-BGA | 160-BGA |
|---------|---------|---------|
| MT90823 | MT90863 | MT90826 |



Metric Quad Flat Pack - L Suffix

| Dim            | 44-Pin                   |                 | 64-                      | Pin                     | 100                      | -Pin                    | 128-Pin                  |                         |  |
|----------------|--------------------------|-----------------|--------------------------|-------------------------|--------------------------|-------------------------|--------------------------|-------------------------|--|
| DIM            | Min                      | Max             | Min                      | Max                     | Min                      | Max                     | Min                      | Max                     |  |
| Α              | -                        | 0.096<br>(2.45) | -                        | 0.134<br>(3.40)         | -                        | 0.134<br>(3.40)         | -                        | 0.154<br>(3.85)         |  |
| A1             | 0.01<br>(0.25)           | -               | 0.01<br>(0.25)           | -                       | 0.01<br>(0.25)           | -                       | 0.00                     | 0.01<br>(0.25)          |  |
| A2             | 0.077<br>(1.95)          | 0.083<br>(2.10) | 0.1<br>(2.55)            | 0.12<br>(3.05)          | 0.1<br>(2.55)            | 0.12<br>(3.05)          | 0.125<br>(3.17)          | 0.144<br>(3.60)         |  |
| b              | 0.01<br>(0.30)           | 0.018<br>(0.45) | 0.013<br>(0.35)          | 0.02<br>(0.50)          | 0.009<br>(0.22)          | 0.015<br>(0.38)         | 0.019<br>(0.30)          | 0.018<br>(0.45)         |  |
| D              | 0.547<br>(13.90          |                 | 0.941<br>(23.90          |                         | 0.941 BSC<br>(23.90 BSC) |                         | 1.23 BSC<br>(31.2 BSC)   |                         |  |
| D <sub>1</sub> | 0.394<br>(10.00          |                 | 0.787 BSC<br>(20.00 BSC) |                         | 0.787 BSC<br>(20.00 BSC) |                         | 1.102 BSC<br>(28.00 BSC) |                         |  |
| E              | 0.547 BSC<br>(13.90 BSC) |                 | 0.705 BSC<br>(17.90 BSC) |                         | 0.705 BSC<br>(17.90 BSC) |                         | 1.23 BSC<br>(31.2 BSC)   |                         |  |
| E <sub>1</sub> | 0.394<br>(10.00          |                 | 0.551<br>(14.00          | BSC<br>BSC)             | 0.551 BSC<br>(14.00 BSC) |                         | 1.102 BSC<br>(28.00 BSC) |                         |  |
| e              | 0.031<br>(0.80           | BSC<br>BSC)     | 0.039<br>(1.0            |                         | 0.256 BSC<br>(0.65 BSC)  |                         | 0.031 BSC<br>(0.80 BSC)  |                         |  |
| L              | 0.029<br>(0.73)          | 0.04<br>(1.03)  | 0.029<br>(0.73)          | 0.04<br>(1.03)          | 0.029<br>(0.73)          | 0.04<br>(1.03)          | 0.029<br>(0.73)          | 0.04<br>(1.03)          |  |
| L1             | 0.077 REF<br>(1.95 REF)  |                 |                          | 0.077 REF<br>(1.95 REF) |                          | 0.077 REF<br>(1.95 REF) |                          | 0.063 REF<br>(1.60 REF) |  |

NOTE: Governing controlling dimensions in parenthesis () are in millimeters.

# Package Outlines

| Dim            | 160             | -Pin            | 208             | -Pin                    | 240-            |                  |  |
|----------------|-----------------|-----------------|-----------------|-------------------------|-----------------|------------------|--|
| Dim            | Min             | Max             | Min             | Max                     | Min             | Max              |  |
| Α              | -               | 0.154<br>(3.92) |                 | .161<br>(4.10)          | -               | 0.161<br>(4.10)  |  |
| A1             |                 | 0.01<br>(0.25)  | 0.01<br>(0.25)  | 0.02<br>(0.50)          | 0.01<br>(0.25)  | 0.02<br>(0.50)   |  |
| A2             | 0.125<br>(3.17) | 0.144<br>(3.67) | .126<br>(3.20)  | .142<br>(3.60)          | 0.126<br>(3.2)  | 0.142<br>(3.60)  |  |
| b              | 0.009<br>(0.22) | 0.015<br>(0.38) | .007<br>(0.17)  | .011<br>(0.27)          | 0.007<br>(0.17) | 0.010<br>(0.27)  |  |
| D              | 1.23<br>(31.2   |                 |                 | 204<br>).6)             | 1.360<br>(34.6  |                  |  |
| D <sub>1</sub> | 1.102<br>(28.00 |                 |                 | 102<br>.00)             | 1.26<br>(32.00  |                  |  |
| E              | 1.23<br>(31.2   |                 | -               | BSC<br>BSC)             | 1.360<br>(34.6  |                  |  |
| E <sub>1</sub> | 1.102<br>(28.00 |                 |                 | BSC)                    | 1.26<br>(32.00  |                  |  |
| е              | 0.025<br>(0.65  |                 |                 |                         |                 | 97 BSC<br>0 BSC) |  |
| L              | 0.029<br>(0.73) | 0.04<br>(1.03)  | 0.018<br>(0.45) | 0.029<br>(0.75)         | 0.018<br>(0.45) | 0.029<br>(0.75)  |  |
| L1             | 0.063<br>(1.60  |                 |                 | 0.051 REF<br>(1.30 REF) |                 | REF<br>REF)      |  |

NOTE: Governing controlling dimensions in parenthesis ( ) are in millimeters.



http://www.mitelsemi.com

World Headquarters - Canada

Tel: +1 (613) 592 2122 Fax: +1 (613) 592 6909

North America

Tel: +1 (770) 486 0194 Fax: +1 (770) 631 8213 **Asia/Pacific** Tel: +65 333 6193 Fax: +65 333 6192 Europe, Middle East, and Africa (EMEA) Tel: +44 (0) 1793 518528 Fax: +44 (0) 1793 518581

Information relating to products and services furnished herein by Mitel Corporation or its subsidiaries (collectively "Mitel") is believed to be reliable. However, Mitel assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Mitel, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Mitel, or non-Mitel furnished goods or services may infringe patents or other intellectual property rights owned by Mitel.

This publication is issued to provide information only and (unless agreed by Mitel in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Mitel without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or services of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Mitel's conditions of sale which are available on request.

M Mitel (design) and ST-BUS are registered trademarks of MITEL Corporation Mitel Semiconductor is an ISO 9001 Registered Company Copyright 1999 MITEL Corporation All Rights Reserved Printed in CANADA

TECHNICAL DOCUMENTATION - NOT FOR RESALE