Features

－ $4,096 \times 4,096$ channel non－blocking switching at 8.192 or 16.384 Mbps
－Per－channel variable or constant throughput delay
－Accepts 32 ST－BUS streams of 2．048 Mbps， 4．096 Mbps，8．192 Mbps or 16．384 Mbps
－Split Rate mode provides a rate conversion option to convert data from one rate to another rate
－Automatic frame offset delay measurement for ST－BUS input streams
－Per－stream input delay programming
－Per－stream output advancement programming
－Per－channel high impedance output control
－Bit Error Monitoring on selected ST－BUS input and output channels．
－Per－channel message mode
－Connection memory block programming
－IEEE－1149．1（JTAG）Test Port
－ 3.3 V local I／O with 5 V tolerant inputs and TTL compatible outputs

Ordering Information

MT90826AL	160 Pin MQFP	Trays
MT90826AG	160 Ball PBGA	Trays
MT90826AV	144 Ball LBGA	Trays
MT90826AL1	160 Pin MQFP＊	Trays
＊Pb Free Matte Tin		
$\mathbf{- 4 0}^{\circ} \mathbf{C}$ to $\mathbf{+ 8 5}{ }^{\circ} \mathbf{C}$		

Applications

－Medium switching platforms
－CTI application
－Voice／data multiplexer
－Digital cross connects
－WAN access system
－Wireless base stations

Description

The MT90826 Quad Digital Switch has a non-blocking switch capacity of $4,096 \times 4,096$ channels at a serial bit rate of 8.192 Mbps or $16.384 \mathrm{Mbps}, 2,048 \times 2,048$ channels at 4.096 Mbps and 1024×1024 channels at 2.048 Mbps . The device has many features that are programmable on a per stream or per channel basis, including message mode, input offset delay and high impedance output control.

The per stream input and output delay control is particularly useful for managing large multi-chip switches with a distributed backplane.

Operating in Split Rate mode allows rate conversion for switching between two groups of bit rate streams.

Table of Contents

1.0 Device Overview 12
2.0 Functional Description 14
2.1 Data and Connection Memory 14
2.2 Connection and Message Modes 14
2.3 Clock Timing Requirements 15
3.0 Switching Configurations 15
3.1 Serial Input Frame Alignment Evaluation 16
3.2 Input Frame Offset Selection 16
3.3 Output Advance Offset Selection 16
3.4 Memory Block Programming 17
3.5 Bit Error Rate Monitoring 17
4.0 Delay Through the MT90826 18
4.1 Variable Delay Mode (TM1=0, TM0=0) 18
4.2 Constant Delay Mode (TM1=1, TM0=0) 18
5.0 Microprocessor Interface 18
6.0 Memory Mapping 29
7.0 Connection Memory Control. 29
8.0 DTA Data Transfer Acknowledgment Pin 29
9.0 Initialization of the MT90826 30
10.0 JTAG Support. 30
10.1 Test Access Port (TAP) 30
10.2 Instruction Register 31

List of Figures

Figure 1 - Functional Block Diagram 1
Figure 2-160-Pin MQFP Pin Connections 7
Figure 3-160 Ball PBGA Pin Connections 8
Figure 4-144 Ball LBGA Pin Connections 9
Figure 5 - Example for Frame Alignment Measurement 22
Figure 6 - Examples for Input Offset Delay Timing 26
Figure 7 - Examples for Frame Output Offset Timing 28
Figure 8 - ST-BUS Timing for Stream rate of 16.384 Mbps 37
Figure 9 - ST-BUS Timing for Stream rate of 8.192 Mbps when CLK = 16.384 MHz 38
Figure 10 - ST-BUS Timing for Stream rate of 4.096 Mbps when CLK $=16.384 \mathrm{MHz}$ 38
Figure 11 - ST-BUS Timing for Stream rate of 4.096 Mbps when CLK $=8.192 \mathrm{MHz}$. 38
Figure 12 - ST-BUS Timing for Stream rate of 2.048 Mbps when CLK = 16.384 MHz 39
Figure 13 - -BUS Timing for Stream rate of 2.048 Mbps when CLK $=8.192 \mathrm{MHz}$. 39
Figure 14 - Serial Output and External Control 39
Figure 15 - Output Driver Enable (ODE) 40
Figure 16 - Motorola Non-Multiplexed Bus Timing 42

List of Tables

Table 1 - Stream Usage under Various Operation Modes 13
Table 2 - Output High Impedance Control 13
Table 3 - Address Map for Registers (A13 = 0) 13
Table 4 - Address Map for Memory Locations (A13 = 1) 17
Table 5 - Control Register Bits 19
Table 6 - Serial Data Rate Selections and External Clock Rates 20
Table 7 - Frame Alignment (FAR) Register Bits 21
Table 8 - Frame Delay Offset Register (DOS) Bits 23
Table 9 - Frame delay Bits (FD9, FD2-0) and Input Offset Bits (IFn3-0) 25
Table 10 - Frame Output Offset (FOR) Register Bits 27
Table 11 - Output Offset Bits (FD9, FD2-0) 27
Table 12 - Bit Error Input Selection (BISR) Register Bits 28
Table 13 - Bit Error Count (BECR) Register Bits 28
Table 14 - Connection Memory Bits 34
Table 15 - SAB and CAB Bits Programming for Various Interface Mode 34

Changes Summary

The following table captures the changes from the April 2005 issue.

Page	Item	Change
26	Figure 6 "Examples for Input Offset Delay Timing"	Clarified the mid-point sampling of the 16Mbps input data.
30	Section 9.0 Initialization of the MT90826	Added the 600 s waiting time needed for the APLL module to be stabilized before starting the next microprocessor port access cycle.
37	AC Electrical Characteristics - Serial Streams for ST-BUS.	Clarified the 16, 8, 4 and 2 Mbps Input Data Sampling timing.
37	Figure 8 "ST-BUS Timing for Stream rate of 16.384 Mbps"	Clarified the input data sampling position at 16 Mbps data rate.
38	Figure 9 "ST-BUS Timing for Stream rate of 8.192 Mbps when CLK = 16.384 MHz"	Added the input data sampling position at 8 Mbps data rate.
38	Figure 10 "ST-BUS Timing for Stream rate of 4 4.096 Mbps when CLK = $16.384 ~ M H z " ~$	Added the input data sampling position at 4 Mbps data rate.
39	Figure 12 "ST-BUS Timing for Stream rate of 2.048 Mbps when CLK = 16.384 MHz"	Added the input data sampling position at 2 Mbps data rate.

Figure 2-160-Pin MQFP Pin Connections

Figure 3-160 Ball PBGA Pin Connections

PINOUT DIAGRAM: (as viewed through top of package)
A1 corner identified by metallized marking, mould indent, ink dot or right-angled corner

	1	2	3	4	5	6	7	8	9	10	11	12
A	STo23	STo20	STi21	STi20	STi17	STi16	STo14	STo13	STo11	STo9	STi11	STi9
B	STo22	STo21	STi23	STi22	STi19	STi18	STo15	STo12	STo10	STo8	STI10	STi8
C	STi26	STi25	STo24	STo19	STo18	STo17	STo16	STi14	STi13	STi12	STo7	STo5
D	STi27	STi24	STo25	GND	VDD	VDD	VDD	STi15	GND	STo2	STo6	STo4
E	STi29	STi28	STo27	STo26	GND	GND	GND	GND	VDD	STo3	STi7	STi6
F	STi30	STi31	STo28	VDD	GND	GND	GND	GND	VDD	STo1	STi4	STi5
G	STo30	STo31	STo29	VDD	GND	GND	GND	GND	PLLVDD	STo0	STi3	STi2
H	D1	D2	D0	VDD	GND	GND	GND	GND	PLLGND	ODE	STiO	STi1
J	D3	D7	D4	GND	$\overline{\text { DS }}$	VDD	VDD	VDD	NC	NC	$\overline{\mathrm{FOi}}$	$\overline{\text { CLK }}$
K	D5	D15	D11	D13	$\overline{\mathrm{CS}}$	A2	A5	A8	A9	$\overline{\text { RESET }}$	IC1	IC3
L	D6	D8	D9	R/W	A13	A1	A4	A10	A12	TCK	TDO	IC2
M	D10	D12	D14	$\overline{\text { DTA }}$	A0	A3	A6	A7	A11	TMS	TDI	TRST

Figure 4-144 Ball LBGA Pin Connections

Pin Description

Pin \# MQFP	Pin \# PBGA	Pin \# LBGA	Name	Description
$\begin{gathered} 12,22,33,54 \\ 66,77,90,101, \\ 112,125,136, \\ 147,157 \end{gathered}$	$\begin{gathered} \hline \text { D5,D6,D7,D8,D9, } \\ \text { E4,E10,F4, } \\ \text { F10,G4,G10, } \\ \text { H4,J4,J10,K5, } \\ \text { K6,K7 } \end{gathered}$	$\begin{gathered} \hline \mathrm{D} 5, \mathrm{D} 6, \mathrm{D} 7, \mathrm{E9}, \\ \mathrm{~F} 4, \mathrm{F9}, \mathrm{G} 4, \mathrm{H} 4, \\ \mathrm{~J} 6, \mathrm{~J} 7, \mathrm{~J} 8 \end{gathered}$	$V_{D D}$	+3.3 Volt Power Supply.
$\begin{gathered} 11,21,32,45, \\ 53,60,65,71, \\ 76,84,89,95, \\ 100,106,111, \\ 117,124,130, \\ 135,141,146, \\ 156 \end{gathered}$	D4,D10,E5,E6, E7,E8,E9,F5, F9,G5,G9,H5, H9,H10,J5, J6, J7,J8,J9,K4	$\begin{gathered} \text { D4,D9,E5,E6, } \\ \text { E7,E8,F5,F6, } \\ \text { F7,F8,G5,G6, } \\ \text { G7,G8,H5,H6, } \\ \text { H7,H8,J4 } \end{gathered}$	$\mathrm{V}_{\text {ss }}$	Ground.
34	N11	M10	TMS	Test Mode Select (3.3 V Input with Internal pull-up). JTAG signal that controls the state transitions of the TAP controller. This pin is pulled high by an internal pull-up when not driven.
35	M11	M11	TDI	Test Serial Data In (3.3 V Input with Internal pull-up). JTAG serial test instructions and data are shifted in on this pin. This pin is pulled high by an internal pull-up when not driven.
36	N12	L11	TDO	Test Serial Data Out (3.3 V Output). JTAG serial data is output on this pin on the falling edge of TCK. This pin is held in high impedance state when JTAG scan is not enabled.
37	N13	L10	TCK	Test Clock (5 V Tolerant Input). Provides the clock to the JTAG test logic.
38	M12	M12	$\overline{\text { TRST }}$	Test Reset (3.3 V Input with internal pull-up). Asynchronously initializes the JTAG TAP controller by putting it in the Test-Logic-Reset state. This pin is pulled by an internal pull-up when not driven. This pin should be pulsed low on power-up, or held low, to ensure that the device is in the normal functional mode.
42	L11	K11	IC1	Internal Connection 1 (3.3 V Input with internal pull-down). Connect to V_{SS} for normal operation.
43	M13	K10	$\overline{\text { RESET }}$	Device Reset (5 V Tolerant Input). This input (active LOW) puts the device in its reset state which clears the device internal counters and registers.

Pin Description (continued)

Pin \# MQFP	Pin \# PBGA	Pin \# LBGA	Name	Description
44	L12	L12	IC2	Internal Connection 2 (3.3 V Input with internal pull-down). Connect to $\mathrm{V}_{\text {SS }}$ for normal operation.
46	L13	K12	IC3	Internal Connection 3 (3.3 V Input with internal pull-down). Connect to $\mathrm{V}_{\text {SS }}$ for normal operation.
47	K12	J11	$\overline{\mathrm{FO}} \mathrm{i}$	Master Frame Pulse (5 V Tolerant Input). This input accepts a 122 ns or 60 ns wide negative frame pulse. The CPLL bit in the control register determines the usage of the frame pulse width. See Table 6 for details.
50	K10	H9	PLLGND	Phase Lock Loop Ground.
51	K9	G9	PLLVDD	Phase Lock Loop Power Supply. $3.3 \text { V }$
52	K13	J12	$\overline{\text { CLK }}$	Master Clock (5 V Tolerant Input). Serial clock for shifting data in/out on the serial streams. This pin accepts a clock frequency of 8.192 MHz or 16.384 MHz. The CPLL bit in the control register determines the usage of the clock frequency. See Table 6 for details.
55	J13	H10	ODE	Output Drive Enable (5 V Tolerant Input). This is the output-enable control pin for the STo0 to STo31 serial outputs. See Table 2 for details.
56 57 58 59 $67-70$ 78,79 82,83 $91-94$ $102-105$ $113-116$ $126-129$ $137-140$	H13 H12 G13 G12 F13,F12,E13,E12 B13,A13 A12,B12 C11,C10,C9,C8 A7,B7,A6,B6 A5,B5,A4,B4 A2,B2,A1,B1 E2,F2,E1,F1	H11 H12 G12 G11 F11,F12,E12,E11 B12,A12 B11,A11 C10,C9,C8,D8 A6,A5,B6,B5, A4,A3,B4,B3 D2,C2,C1,D1 E2,E1,F1,F2	STiO/FEi0, STi1/FEi1 STi2/FEi2 STi3/FEi3 STi4-7/FEi4-7 STi8-9/FEi8-9 STi10-11/FEi10-11 STi12-15/FEi12-15 STi16-19/FEi16-19 STi20-23/FEi20-23 STi24-27/FEi24-27 STi28-31/FEi28-31	Serial Input Streams 0 to 31 and Frame Evaluation Inputs 0 to 31 (5 V Tolerant Inputs). Serial data input streams. These streams may have data rates of $2.048,4.096,8.192$ or 16.384 Mbps , depending upon the value programmed at bits DR0 - DR2 in the control register. In the frame evaluation mode, they are used as the frame evaluation inputs.
$\begin{gathered} \hline 61-64 \\ 72-75 \\ 85-88 \\ 96-99 \\ 107-110 \\ 118,119 \\ 122,123 \\ 131-134 \\ 142-145 \end{gathered}$	$\begin{gathered} \text { G11,F11,E11,D11 } \\ \text { D13,C13,D12,C12 } \\ \text { A11,B11,A10,B10 } \\ \text { B9,A9,B8,A8 } \\ \text { C7,C6,C5,C4 } \\ \text { A3,B3 } \\ \text { D3,C3 } \\ \text { D2,C2,C1,D1 } \\ \text { G1,G2,H1,H2 } \end{gathered}$	$\begin{gathered} \text { G10,F10,D10,E10 } \\ \text { D12,C12,D11,C11 } \\ \text { B10,A10,B9,A9 } \\ \text { B8,A8,A7,B7 } \\ \text { C7,C6,C5,C4 } \\ \text { A2,B2 } \\ \text { B1,A1 } \\ \text { C3,D3,E4,E3 } \\ \text { F3,G3,G1,G2 } \end{gathered}$	SToO-3 STo4-7 STo8-11 STo12-15 STo16-19 STo20, STo21 STo22, STo23 STo24-27 STo28-31	ST-BUS Output 0 to 31 (Three-state Outputs). Serial data output streams. These streams may have data rates of $2.048,4.096,8.192$, or 16.384 Mbps , depending upon the value programmed at bits DR0 - DR2 in the control register.

Pin Description (continued)

Pin \# MQFP	Pin \# PBGA	Pin \# LBGA	Name	Description
$\begin{gathered} 148-153 \\ 154,155 \\ 158 \\ 3-7 \\ 8,9 \end{gathered}$	$\begin{gathered} \mathrm{G} 3, \mathrm{~J} 1, \mathrm{H} 3, \mathrm{~J} 2, \mathrm{~J} 3, \mathrm{~K} 1, \\ \mathrm{~K} 2 \mathrm{~K} 3 \\ \mathrm{~L} 1 \\ \mathrm{~L} 2, \mathrm{M} 1, \mathrm{M} 2, \mathrm{M} 3, \mathrm{~N} 1, \\ \mathrm{~N} 2, \mathrm{~N} 3 \end{gathered}$	$\begin{gathered} \mathrm{H} 3, \mathrm{H} 1, \mathrm{H} 2, \mathrm{~J} 1, \mathrm{~J} 3, \mathrm{~K} 1 \\ \mathrm{~L} 1, \mathrm{~J} 2 \\ \mathrm{~L} 2 \\ \mathrm{~L} 3, \mathrm{M} 1, \mathrm{~K} 3, \mathrm{M} 2, \mathrm{~K} 4 \\ \mathrm{M} 3, \mathrm{~K} 2 \end{gathered}$	$\begin{gathered} \text { D0-5, } \\ \text { D6, D7 } \\ \text { D8 } \\ \text { D9-13 } \\ \text { D14, D15 } \end{gathered}$	Data Bus 0 to 15 (5 V Tolerant I/O). These pins form the 16 -bit data bus of the microprocessor port.
10	M4	M4	$\overline{\text { DTA }}$	Data Transfer Acknowledgment (Three-state Output). This output pulses low from tristate to indicate that a databus transfer is complete. A pullup resistor is required to hold a HIGH level when the pin is tristated.
15	N5	J5	$\overline{\text { DS }}$	Data Strobe (5 V Tolerant Input). This active low input works in conjunction with $\overline{\mathrm{CS}}$ to enable the read and write operations.
14	N4	L4	$\mathrm{R} / \overline{\mathrm{W}}$	Read/Write (5 V Tolerant Input). This input controls the direction of the data bus lines (D0-D15) during a microprocessor access.
13	M5	K5	$\overline{\mathrm{CS}}$	Chip Select (5 V Tolerant Input). Active low input used by a microprocessor to activate the microprocessor port.
$\begin{aligned} & 16-20 \\ & 23-31 \end{aligned}$	M6,N6,N7,M7,N8 N9,N10,M8,M9,L7 L8,M10,L9,L10	M5,L6,K6,M6,L7, K7,M7,M8,K8,K9, L8,M9,L9,L5	$\begin{gathered} \text { A0 - A4 } \\ \text { A5-A13 } \end{gathered}$	Address 0 to 13 (5 V Tolerant Input). These lines provide the A0-A13 address lines when accessing the internal registers or memories.
$\begin{gathered} 1,2,39,40,41,48, \\ 49,80,81,120, \\ 121,159,160 \end{gathered}$	E3,F3,H11,J11, J12,K8,K11, L3,L4,L5,L6.	J9,J10	NC	No Connect. These pins have to be left unconnected.

1.0 Device Overview

The MT90826 Quad Digital Switch is capable of switching up to $4,096 \times 4,096$ channels. The MT90826 is designed to switch 64 Kbps PCM or $\mathrm{N} \times 64 \mathrm{Kbps}$ data. The device maintains frame integrity in data applications and minimum throughput delay for voice applications on a per channel basis.

The serial input streams of the MT90826 can have a bit rate of $2.048,4.096,8.192$ or 16.384 Mbps and are arranged in 125μ s wide frames, which contain $32,64,128$ or 256 channels, respectively. The data rates on input and output streams match. All inputs and outputs may be programmed to $2.048,4.096$ or 8.192 Mbps . STiO-15 and STo0-15 may be set to 16.384 Mbps . Combinations of two bit rates, N and $2 N$ are provided. See Table 1.

By using Zarlink's message mode capability, the microprocessor can access input and output timeslots on a per channel basis. This feature is useful for transferring control and status information for external circuits or other STBUS devices.

To correct for backplane delays, the MT90826 has a frame offset calibration function which allows users to measure the frame delay on any of the input streams, This information can then be used to program the input offset dealy for each individual stream. Refer to Table 7, 8, and 9 and Figure 6. In addition, the MT90826 allow users to advance
the output data position up to 45 ns to compensate for the output delay caused by excessive output loading conditions. See Figure 7 "Examples for Frame Output Offset Timing".

Serial Interface Mode	Input Stream	Input Data Rate	Output Stream	Output Data Rate
8 Mbps	STi0-31	8 Mbps	STo0-31	8 Mbps
16 Mbps	STi0-15	16 Mbps	STo0-15	16 Mbps
4 Mbps and 8 Mbps	STi0-15	4 Mbps	STo0-15	4 Mbps
	STi15-31	8 Mbps	STo16-31	8 Mbps
16 Mbps and 8 Mbps	STi0-11	16 Mbps	STo0-11	16 Mbps
	STi12-19	8 Mbps	STo12-19	8 Mbps
4 Mbps	STi0-31	4 Mbps	STo0-31	4 Mbps
	STi0-15	2 Mbps	STo0-15	2 Mbps
	STi16-31	4 Mbps	STo16-31	4 Mbps
2 2 Mbps	STi0-31	2 Mbps	STo0-31	2 Mbps

Table 1 - Stream Usage under Various Operation Modes

ODE pin	OSB bit in Control register	OE bit in Connection Memory	ST-BUS Output Driver
0	0	X	High-Z
X	X	0	Per Channel High-Z
1	0	1	Enable
0	1	1	Enable
1	1	1	Enable

Table 2 - Output High Impedance Control
The microport interface is compatible with Motorola non-multiplexed buses. Connection memory locations may be directly written to or read from; data memory locations may be directly read from. A $\overline{D T A}$ signal is provided to hold the bus until the asynchronous microport operation is queued into the device.

A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0	Location
0	0	0	0	0	0	0	0	0	0	0	0	0	0	Control Register, CR
0	0	0	0	0	0	0	0	0	0	0	0	0	1	Frame Alignment Register, FAR
0	0	0	0	0	0	0	0	0	0	0	0	1	0	Input Offset Selection Register 0, DOS0
0	0	0	0	0	0	0	0	0	0	0	0	1	1	Input Offset Selection Register 1, DOS1
0	0	0	0	0	0	0	0	0	0	0	1	0	0	Input Offset Selection Register 2, DOS2
0	0	0	0	0	0	0	0	0	0	0	1	0	1	Input Offset Selection Register 3, DOS3
0	0	0	0	0	0	0	0	0	0	0	1	1	0	Input Offset Selection Register 4, DOS4

Table 3 - Address Map for Registers (A13 = 0)

A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0	Location
0	0	0	0	0	0	0	0	0	0	0	1	1	1	Input Offset Selection Register 5, DOS5
0	0	0	0	0	0	0	0	0	0	1	0	0	0	Input Offset Selection Register 6, DOS6
0	0	0	0	0	0	0	0	0	0	1	0	0	1	Input Offset Selection Register 7, DOS7
0	0	0	0	0	0	0	0	0	0	1	0	1	0	Frame Output Offset Register, FOR0
0	0	0	0	0	0	0	0	0	0	1	0	1	1	Frame Output Offset Register, FOR1
0	0	0	0	0	0	0	0	0	0	1	1	0	0	Frame Output Offset Register, FOR2
0	0	0	0	0	0	0	0	0	0	1	1	0	1	Frame Output Offset Register, FOR3
0	0	0	0	0	0	0	0	0	0	1	1	1	0	Unused
0	0	0	0	0	0	0	0	0	0	1	1	1	1	Unused
0	0	0	0	0	0	0	0	0	1	0	0	0	0	Unused
0	0	0	0	0	0	0	0	0	1	0	0	0	1	Bit Error Input Selection Register, BISR
0	0	0	0	0	0	0	0	0	1	0	0	1	0	Bit Error Count Register, BECR

Table 3 - Address Map for Registers (A13 = 0) (continued)

2.0 Functional Description

A functional Block Diagram of the MT90826 is shown in Figure 1.

2.1 Data and Connection Memory

For all data rates, the received serial data is converted to parallel format by internal serial-to-parallel converters and stored sequentially in the data memory. Depending upon the selected operation programmed in the control register, the usable data memory may be as large as 4,096 bytes. The sequential addressing of the data memory is performed by an internal counter, which is reset by the input 8 kHz frame pulse ($\overline{\mathrm{FOi}}$) to mark the frame boundaries of the incoming serial data streams.

Data to be output on the serial streams may come from either the data memory or connection memory. Locations in the connection memory are associated with particular ST-BUS output channels. When a channel is due to be transmitted on an ST-BUS output, the data for this channel can be switched either from an ST-BUS input in connection mode, or from the lower half of the connection memory in message mode. Data destined for a particular channel on a serial output stream is read from the data memory or connection memory during the previous channel timeslot. This allows enough time for memory access and parallel-to-serial conversion.

2.2 Connection and Message Modes

In the connection mode, the addresses of the input source data for all output channels are stored in the connection memory. The connection memory is mapped in such a way that each location corresponds to an output channel on the output streams. For details on the use of the source address data (CAB and SAB bits), see Table 14. Once the source address bits are programmed by the microprocessor, the contents of the data memory at the selected address are transferred to the parallel-to-serial converters and then onto an ST-BUS output stream.

By having several output channels connected to the same input source channel, data can be broadcast from one input channel to several output channels.

In message mode, the microprocessor writes data to the connection memory locations corresponding to the output stream and channel number. The lower half (8 least significant bits) of the connection memory content is
transferred directly to the parallel-to-serial converter. This data will be output on the ST-BUS streams in every frame until the data is changed by the microprocessor.

The three most significant bits of the connection memory controls the following for an output channel: message or connection mode, constant or variable delay mode, enables/tristate the ST-BUS output drivers and bit error test pattern enable. If an output channel is set to a high-impedance state by setting the OE bit to zero in the connection memory, the ST-BUS output will be in a high impedance state for the duration of that channel. In addition to the perchannel control, all channels on the ST-BUS outputs can be placed in a high impedance state by pulling the ODE input pin low and programming the output stand by (OSB) bit in the control register to low. This action overrides the individual per-channel programming by the connection memory bits. See Table 2 for detail.

The connection memory data can be accessed via the microprocessor interface through the D0 to D15 pins. The addressing of the device internal registers, data and connection memories is performed through the address input pins and the Memory Select (MS) bit of the control register.

2.3 Clock Timing Requirements

The master clock ($\overline{C L K}$) frequency must be either at 8.192 MHz or 16.384 MHz for serial data rate of $2.048,4.096$, 8.192 and 16.384 Mbps ; see Table 6 for the selections of the master clock frequency.

3.0 Switching Configurations

The MT90826 maximum non-blocking switching configurations is determined by the data rates selected for the serial inputs and outputs. The switching configuration is selected by three DR bits in the control register. See Table 5 and Table 6.

8 Mbps mode (DR2=0, DR1=0, DR0=0)

When the 8 Mbps mode is selected, the device is configured with 32 -input/32-output data streams each having 128 64 Kbps channels. This mode allows a maximum non-blocking capacity of $4,096 \times 4,096$ channels. Table 1 summarizes the switching configurations and the relationship between different serial data rates and the master clock frequencies.

16 Mbps mode (DR2=0, DR1=0, DR0 = 1)

When the 16 Mbps mode is selected, the device is configured with 16 -input/16-output data streams each having 25664 Kbps channels. This mode allows a maximum non-blocking capacity of $4,096 \times 4,096$ channels.

4 Mbps and 8 Mbps mode (DR2=0, DR1=1, DR0=0)

When the 4 Mbps and 8 Mbps mode is selected, the device is configured with 32 -input/32-output data streams. STi0-15/STo0-15 have a data rate of 4 Mbps and STi16-31/STo16-31 have a data rate of 8 Mbps . This mode allows a maximum non-blocking capacity of $3,072 \times 3,072$ channels. The MT90826 is capable of rate conversion, allowing 4 Mbps input to be converted to 8 Mbps output and vice versa.

16 Mbps and 8 Mbps mode (DR2=0, DR1=1, DR0=1)

When the 16 Mbps and 8 Mbps mode is selected, the device is configured with 20 -input/20-output data streams. STi0-11/STo0-11 have a data rate of 16 Mbps and STi12-19/STo12-19 have a data rate of 8 Mbps . This mode allows a maximum non-blocking capacity of $4,096 \times 4,096$ channels. The MT90826 is capable of rate conversion, allowing 16 Mbps input to be converted to 8 Mbps output and vice versa.

4 Mbps mode (DR2=1, DR1=0, DR0=0)
When the 4 Mbps mode is selected, the device is configured with 32 -input/32-output data streams each having 64 64 Kbps channels. This mode allows a maximum non-blocking capacity of $2,048 \times 2,048$ channels.

```
2 Mbps and 4 Mbps mode (DR2=1, DR1=0, DR0=1)
```

When the 2 Mbps and 4 Mbps mode is selected, the device is configured with 32 -input/32-output data streams. STi0-15/STo0-15 have a data rate of 2 Mbps and STi16-31/STo16-31 have a data rate of 4 Mbps . This mode allows a maximum non-blocking capacity of $1,536 \times 1,536$ channels. The MT90826 is capable of rate conversion, allowing 2 Mbps input to be converted to 4 Mbps output and vice versa.

2 Mbps mode (DR2=1, DR1=1, DR0 =0)
When the 2 Mbps mode is selected, the device is configured with 32-input/32-output data streams each having 32 64 Kbps channels. This mode allows a maximum non-blocking capacity of $1,024 \times 1,024$ channels.

3.1 Serial Input Frame Alignment Evaluation

The MT90826 provides the frame evaluation inputs, FEi0 to FEi31, to determine different data input delays with respect to the frame pulse $\overline{\mathrm{FOi}}$. By using the frame evaluation input select bits (FE0 to FE4) of the frame alignment register (FAR), users can select one of the thirty-two frame evaluation inputs for the frame alignment measurement.

The internal master clock, which has a fixed relationship with the $\overline{\mathrm{CLK}}$ and $\overline{\mathrm{FOi}}$ depending upon the mode of operation, is used as the reference timing signal to determine the input frame delays. See Figure 5 for the signal alignments between the internal and the external master clocks.

A measurement cycle is started by setting the start frame evaluation (SFE) bit low for at least one frame. Then the evaluation starts when the SFE bit in the control register is changed from low to high. Two frames later, the complete frame evaluation (CFE) bit of the frame alignment register changes from low to high to signal that a valid offset measurement is ready to be read from bits 0 to 9 of the FAR register. The SFE bit must be set to zero before a new measurement cycle started.

The falling edge of the frame measurement signal (FEi) is evaluated against the falling edge of the frame pulse ($\overline{\mathrm{FOi}}$). See Table 7 for the description of the frame alignment register.

3.2 Input Frame Offset Selection

Input frame offset selection allows the channel alignment of individual input streams, which operate at 4.096 Mbps , 8.192 Mbps or 16.384 Mbps , to be shifted against the input frame pulse ($\overline{\mathrm{FO}}$). The input offset selection is not available for streams operated at 2.048 Mbps . This feature is useful in compensating for variable path delays caused by serial backplanes of variable lengths, which may be implemented in large centralized and distributed switching systems.

Each input stream has its own delay offset value programmed by the input delay offset registers. Each delay offset register can control 4 input streams. There are eight delay offset registers (DOS0 to DOS7) to control 32 input streams. Possible adjustment can range up to +4.5 internal master clock periods forward with resolution of 0.5 internal master clock period. See Table 8 and Table 9 for frame input delay offset programming.

3.3 Output Advance Offset Selection

The MT90826 allows users to advance individual output streams up to 45 ns with a resolution of 15 ns when the device is in $8 \mathrm{Mbps}, 16 \mathrm{Mbps}, 4$ and 8 Mbps or 16 and 8 Mbps mode. The output delay adjustment is useful in compensating for variable output delays caused by various output loading conditions. The frame output offset registers (FORO \& FOR3) control the output offset delays for each output streams via the programming of the OFn bits.

See Table 10 and Table 11 for the frame output offset programming.

A13	Stream Address (ST0-31)						Channel Address (Ch0-255)								
	A12	A11	A10	A9	A8	Stream Location	A7	A6	A5	A4	A3	A2	A1	A0	Channel Location
1	0	0	0	0	0	Stream 0	0	0	0	0	0	0	0	0	Ch 0
1	0	0	0	0	1	Stream 1	0	0	0	0	0	0	0	1	Ch 1
1	0	0	0	1	0	Stream 2			
1	0	0	0	1	1	Stream 3									
1	0	0	1	0	0	Stream 4	0	0	0	1	1	1	1	0	Ch 30
1	0	0	1	0	1	Stream 5	0	0	0	1	1	1	1	1	Ch 31 (Note 2)
1	0	0	1	1	0	Stream 6	0	0	1	0	0	0	0	0	Ch 32
1	0	0	1	1	1	Stream 7	0	0	1	0	0	0	0	1	Ch 33
1	0	1	0	0	0	Stream 8			
.									
.	0 0	0	1	1	1	1 1	1	0	Ch 62 (Note 3)
1	1	0	1	1	0	Stream 22	0	0	1	1	1	1	1	1	Ch 63 (Note 3) Ch 64
1	1	0	1	1	1	Stream 23	0	1	0	0	0	0	0	1	Ch 65
1	1	1	0	0	0	Stream 24									
1	1	1	0	0	1	Stream 25	0	1	1	1	1	1	1	0	Ch 126
1	1	1	0	1	0	Stream 26	0	1	1	1	1	1	1	1	Ch 127 (Note 4)
1	1	1	0	1	1	Stream 27	1	0	0	0	0	0	0	0	Ch 128
1	1	1	1	0	0	Stream 28	1	0	0	0	0	0	0	1	Ch 129
1	1	1	1	0	1	Stream 29									
1	1	1	1	1	0	Stream 30	1	1	1	1	1	1	1	0	Ch 254
1	1	1	1	1	1	Stream 31	1	1	1	1	1	1	1	1	Ch 255 (Note 5)

1. Bit A13 must be high for access to data and connection memory positions. Bit A13 must be low for access to registers.
2. Channels 0 to 31 are used when serial stream is at 2 Mbps .
3. Channels 0 to 63 are used when serial stream is at 4 Mbps
4. Channels 0 to 127 are used when serial stream is at 8 Mbps
5. Channels 0 to 255 are used when serial stream is at 16 Mbps

Table 4 - Address Map for Memory Locations (A13 = 1)

3.4 Memory Block Programming

The MT90826 provides users with the capability of initializing the entire connection memory block in two frames. Bits 13 to 15 of every connection memory location will be programmed with the pattern stored in bits 13 to 15 of the control register.

The block programming mode is enabled by setting the memory block program (MBP) bit of the control register high. When the block programming enable (BPE) bit of the control register is set to high, the block programming data will be loaded into the bits 13 to 15 of every connection memory location. The other connection memory bits (bit 0 to 12) are loaded with zeros. When the memory block programming is complete, the device resets the BPE bit to zero.

3.5 Bit Error Rate Monitoring

The MT90826 allows users to perform bit error rate monitoring by sending a pseudo random pattern to a selected ST-BUS output channel and receiving the pattern from a selected ST-BUS input channel. The pseudo random pattern is internally generated by the device with the polynomial of $2^{15}-1$.

Users can select the pseudo random pattern to be presented on a ST-BUS channel by programming the TMO and TM1 bits in the connection memory. When TM0 and TM1 bits are high, the pseudo random pattern is output to the selected ST-BUS output channel. The pseudo random pattern is then received by a ST-BUS input channel which is selected using the BSA and BCA bits in the bit error rate input selection register (BISR). An internal bit error counter keeps track of the error counts which is then stored in the bit error count register (BECR).
The bit error test is enabled and disabled by the SBER bit in the control register. Setting the bit from zero to one initiates the bit error test and enables the internal bit error counter. When the bit is programmed from one to zero,
the device stops the bit error rate test and the internal bit error counter and transfers the error counts to the bit error count register.

In the control register, a zero to one transition of the CBER bit resets the bit error count register and the internal bit error counter.

The MT90826 does not recognize an input of all 1 s as an error. If all 1 s are being fed into the input stream and channel, the BERT on chip BECR does not increment. This test is performed by sending defined data through the message mode to ensure there is proper connectivity, and then running the BER test normally.

4.0 Delay Through the MT90826

The switching of information from the input serial streams to the output serial streams results in a throughput delay. The device can be programmed to perform timeslot interchange functions with different throughput delay capabilities on the per-channel basis. For voice application, select variable throughput delay to ensure minimum delay between input and output data. In wideband data applications, select constant throughput delay to maintain the frame integrity of the information through the switch.

The delay through the device varies according to the type of throughput delay selected by the TM bits in the connection memory.

4.1 Variable Delay Mode (TM1 $=0$, TM0 $=0$)

The delay in this mode is dependent only on the combination of source and destination channels and is independent of input and output streams. The delay through the switch can vary from 3 channels to 1 frame +3 channels. The Variable delay is only available for odd number output streams but not for the even number output streams. Avoid programming the TM0 and TM1 bits to zero in the connection memory when the destination output streams are STo0, 2, 4, ..., 28 and 30.

4.2 Constant Delay Mode (TM1=1, TM0=0)

In this mode, frame integrity is maintained in all switching configurations by making use of a multiple data memory buffer. The delay through the switch is always two frames. The constant delay mode is available for all output streams.

5.0 Microprocessor Interface

The MT90826 provides a parallel microprocessor interface for non-multiplexed bus structures. This interface is compatible with Motorola non-multiplexed buses. The required microprocessor signals are the 16-bit data bus (D0D15), 14-bit address bus (A0-A13) and 4 control lines ($\overline{C S}, \overline{D S}, R / \bar{W}$ and $\overline{D T A}$). See Figure 16 for Motorola nonmultiplexed microport timing.

The MT90826 microport provides access to the internal registers, connection and data memories. All locations provide read/write access except for the data memory and BECR registers which are read only.

For data memory read operations, two consecutive microprocessor cycles are required. The read address (A0-A13) should remain the same for the two consecutive read cycles. The data memory content from the first read cycle should be ignored.

Table 5 - Control Register Bits

Table 5 - Control Register Bits (continued)

DR2	DR1	DR0	Serial Interface Mode	CLK (CPLL=0)	CLK (CPLL=1)
0	0	0	8 Mbps		
0	0	1	16 Mbps		
0	1	0	4 and 8 Mbps	16.384 MHz	16.384 MHz
0	1	1	16 and 8 Mbps		
1	0	0	4 Mbps	16.384 MHz	8.192 MHz
1	0	1	2 and 4 Mbps		
1	1	0	2 Mbps	16.384 MHz	8.192 MHz

Table 6 - Serial Data Rate Selections and External Clock Rates

Table 7 - Frame Alignment (FAR) Register Bits

Figure 5 - Example for Frame Alignment Measurement

Table 8 - Frame Delay Offset Register (DOS) Bits

Table 8 - Frame Delay Offset Register (DOS) Bits (continued)

Input Stream Offset	Measurement Result from Frame Delay Bits				Corresponding Input Offset Bits			
	FD9	FD2	FD1	FDO	IFn3	IFn2	IFn1	IFn0
No internal master clock shift (Default)	1	0	0	0	0	0	0	0
+ 0.5 internal master clock shift	0	0	0	0	0	0	0	1
+ 1.0 internal master clock shift	1	0	0	1	0	0	1	0
+ 1.5 internal master clock shift	0	0	0	1	0	0	1	1
+ 2.0 internal master clock shift	1	0	1	0	0	1	0	0
+ 2.5 internal master clock shift	0	0	1	0	0	1	0	1
+ 3.0 internal master clock shift	1	0	1	1	0	1	1	0
+ 3.5 internal master clock shift	0	0	1	1	0	1	1	1
+ 4.0 internal master clock shift	1	1	0	0	1	0	0	0
+4.5 internal master clock shift	0	1	0	0	1	0	0	1

Table 9 - Frame delay Bits (FD9, FD2-0) and Input Offset Bits (IFn3-0)

Figure 6 - Examples for Input Offset Delay Timing

Table 10 - Frame Output Offset (FOR) Register Bits

Corresponding Output Offset Bits		Output Stream Offset for 8 Mbps, 16 Mbps, 4\&8 Mbps and 16\&8 Mbps modes (Not available for 2 Mbps, 4 Mbps and 2\&4 Mbps modes)
OFn1	OFn0	
0	0	-15 ns
0	1	-30 ns
1	0	-45 ns
1	1	

Table 11 - Output Offset Bits (FD9, FD2-0)

Figure 7 - Examples for Frame Output Offset Timing

Table 12 - Bit Error Input Selection (BISR) Register Bits

Table 13 - Bit Error Count (BECR) Register Bits

The correct data memory content will be presented to the data bus (D0-D15) on the second read cycle.

6.0 Memory Mapping

The address bus on the microprocessor interface selects the internal registers and memories of the MT90826. If the A13 address input is low, then the registers are addressed by A12 to A0 according to Table 3.

If the A13 is high, the remaining address input lines are used to select location in the data or connection memory depending upon MS bit in the control register. For data memory reads, the serial inputs are selected. For connection memory writes, the serial outputs are selected. The destination stream address bits and channel address bits are defined by A12 to A8 and A7 to A0 respectively. See Table 4 for the memory address mapping.

The control register controls all the major functions of the device. It selects the internal memory locations that specify the input and output channels selected for switching and should be programmed immediately after system power-up to establish the desired switching configuration as explained in the Switching Configurations sections.

The data in the control register consists of the block programming (BPD0-2), the DPLL control (CPLL), the clear $B E R$ test (CBER), the start BER test (SBER), the start frame evaluation (SFE), the block programming enable (BPE), the memory block programming bit (MBP), the memory select bits (MS), the output stand by bit (OSB) and the data rate selection (DR0-2) bits. See Table 5 for the description of the control register bits.

7.0 Connection Memory Control

The connection memory controls the switching configuration of the device. Locations of the connection memory are associated with particular STo output streams.

The TM0 and TM1 bits of each connection memory location allows the selection of Variable throughput delay, Constant throughput delay, Message or Bit error test mode for all STo channels.

When the variable or constant throughput delay mode is selected, (TM1 $=0 / 1, \mathrm{TM} 0=0$), the contents of the stream address bit (SAB) and the channel address bit (CAB) of the connection memory defines the source information (stream and channel) of the timeslot that will be switched to the STo streams.

When the message mode is selected, (TM1=0, TM0 $=1$), only the lower half byte (8 least significant bits) of the connection memory is transferred to the associated STo output channel.

When the bit error test mode is selected, (TM1=1, TM0=1), the pseudo random pattern will be output on the associated STo output channel.

See Table 14 for the description of the connection memory bits.

8.0 DTA Data Transfer Acknowledgment Pin

The $\overline{\text { DTA }}$ pin is driven LOW by internal logic, to indicate to the CPU that a data bus transfer is complete. When the read or write cycle ends, this pin changes to the high-impedance state.

9.0 Initialization of the MT90826

During power up, the TRST pin should be pulsed low, or held low continuously, to ensure that the MT90826 is in the normal functional mode. A 5 K pull-down resistor can be connected to the TRST pin so that the device will not enter the JTAG test mode during power up.
An external RC network with a time constant of five times the power supply rise time should be connected to the RESET pin to ensure that the device is properly reset after power up.

After power up, the contents of the connection memory can be in any state. The ODE pin should be held low after power up to keep all serial outputs in a high impedance state until the microprocessor has initialized the switching matrix. This procedure prevents two serial outputs from driving the same stream simultaneously.

Wait for 600μ s for the APLL module to be stabilized before starting the microprocessor initialization routine.
During the microprocessor initialization routine, the microprocessor should program the desired active paths through the switch. Users can also consider using the memory block programming feature to quickly initialize the OE, TM0 and TM1 bits in the connection memory. When this process is complete, the microprocessor controlling the matrices can either bring the ODE pin high or enable the OSB bit in control register to relinquish the high impedance state control.

10.0 JTAG Support

The MT90826 JTAG interface conforms to the Boundary-Scan standard IEEE1149.1. This standard specifies a design-for-testability technique called Boundary-Scan test (BST). The operation of the boundary-scan circuitry is controlled by an external test access port (TAP) Controller.

10.1 Test Access Port (TAP)

The Test Access Port (TAP) provides access to the many test functions of the MT90826. It consists of three input pins and one output pin. The following pins are from the TAP.

- Test Clock Input (TCK)

TCK provides the clock for the test logic. The TCK does not interfere with any on-chip clock and thus remain independent. The TCK permits shifting of test data into or out of the Boundary-Scan register cells concurrently with the operation of the device and without interfering with the on-chip logic.

- Test Mode Select Input (TMS)

The logic signals received at the TMS input are interpreted by the TAP Controller to control the test operations. The TMS signals are sampled at the rising edge of the TCK pulse. This pin is internally pulled to Vdd when it is not driven from an external source.

- Test Data Input (TDI)

Serial input data applied to this port is fed either into the instruction register or into a test data register, depending on the sequence previously applied to the TMS input. Both registers are described in a subsequent section. The received input data is sampled at the rising edge of TCK pulses. This pin is internally pulled to Vdd when it is not driven from an external source.

- Test Data Output (TDO)

Depending on the sequence previously applied to the TMS input, the contents of either the instruction register or data register are serially shifted out towards the TDO. The data out of the TDO is clocked on the falling edge of the TCK pulses. When no data is shifted through the boundary scan cells, the TDO driver is set to a high impedance state.

- Test Reset ($\overline{\text { TRST }}$)

Resets the JTAG scan structure. This pin is internally pulled to VDD.

10.2 Instruction Register

In accordance with the IEEE 1149.1 standard, the MT90826 uses public instructions. The JTAG Interface contains a three-bit instruction register. Instructions are serially loaded into the instruction register from the TDI when the TAP Controller is in its shifted-IR state. Subsequently, the instructions are decoded to achieve two basic functions: to select the test data register that may operate while the instruction is current, and to define the serial test data register path, which is used to shift data between TDI and TDO during data register scanning.

Test Data Register

As specified in IEEE 1149.1, the MT90826 JTAG Interface contains three test data registers:

- The Boundary-Scan register

The Boundary-Scan register consists of a series of Boundary-Scan cells arranged to form a scan path around the boundary of the MT90826 core logic.

- The Bypass Register

The Bypass register is a single stage shift register that provides a one-bit path from TDI to its TDO.

- The Device Identification Register

The device identification register is a 32-bit register with the register contain of:
MSB
L
00000000100000100110000101001011

The LSB bit in the device identification register is the first bit clock out.
The MT90826 scan register contains 165 bits.

Device Pin	Boundary Scan Bit 0 to Bit 165		
	Tri-state Control	Output Scan Cell	Input Scan Cell
$\begin{aligned} & \frac{\overline{\mathrm{FOi}}}{\overline{\mathrm{CLK}}} \\ & \mathrm{ODE} \end{aligned}$			$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$
STiO STi1 STi2 STi3 STo0 STo1 STo2 STo3 STi4 STi5 STi6 STi7 STo4 STo5 STo6 STo7 STi8 STi9 STi10 STi11 STo8 STo9 STo10 STo11 STi12 STi13 STi14 STi15 STo12 STo13 STo14 STo15 STi16 STi17 STi18 STi19 STo16 STo17 STo18 STo19 STi20 STi21 STi22 STi23 STo20 STo21 STo22 STo23 STi24 STi25 STi26 STi27 STo24 STo25 STo26 STo27	7 9 11 13 19 21 23 25 31 33 35 37 55 57 69 61 67 69 71 73 79 81 83 85	8 10 12 14 20 22 24 26 32 34 36 38 44 46 48 50 56 58 60 62 68 70 72 74 80 82 84 86	3 4 15 16 17 18 27 28 29 30 39 40 41 42 51 52 53 54 63 64 65 66 75 76 77 78

Device Pin	Boundary Scan Bit 0 to Bit 165		
	Tri-state Control	Output Scan Cell	Input Scan Cell
STi28 STi29 STi30 STi31 STo28 ST029 ST030 STo31	$\begin{aligned} & 91 \\ & 93 \\ & 95 \\ & 97 \end{aligned}$	$\begin{aligned} & 92 \\ & 94 \\ & 96 \\ & 98 \end{aligned}$	$\begin{aligned} & 87 \\ & 88 \\ & 89 \\ & 90 \end{aligned}$
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15	$\begin{gathered} 99 \\ 102 \\ 105 \\ 108 \\ 111 \\ 114 \\ 117 \\ 120 \\ 123 \\ 126 \\ 129 \\ 132 \\ 135 \\ 138 \\ 141 \\ 144 \end{gathered}$	$\begin{aligned} & 100 \\ & 103 \\ & 106 \\ & 109 \\ & 112 \\ & 115 \\ & 118 \\ & 121 \\ & 124 \\ & 127 \\ & 130 \\ & 133 \\ & 136 \\ & 139 \\ & 142 \\ & 145 \end{aligned}$	101 104 107 110 113 116 119 122 125 128 131 134 137 140 143 146
$\begin{aligned} & \overline{\mathrm{DTA}}^{1} \\ & \overline{\mathrm{CS}} \\ & \frac{\mathrm{R} / \mathrm{W}}{\mathrm{DS}} \end{aligned}$	147	147	$\begin{aligned} & 148 \\ & 149 \\ & 150 \end{aligned}$
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 RESETb			151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

Note 1: $\overline{\mathrm{DTA}}$ is an open drain output and it requires a pull-up resistor. Safe for $\overline{\mathrm{DTA}}=0 . \overline{\mathrm{DTA}}$ cell $=1$ will produce active LOW.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM1	TM0	OE	SAB 4	SAB 3	SAB	SAB 1	SAB 0	CAB 7	CAB	CAB 5	CAB 4	${ }_{3}^{\text {CAB }}$	CAB 2	CAB	CAB 0
Bit	Name			Description											
15-14	TM1-0			Mode Select Bits.											
13	OE			Output Enable. This bit enables the drivers of STo pins on a per-channel basis. When 1, the STo output driver functions normally. When 0 , the STo output driver is in a high-impedance state.											
12-8	SAB4-0			Source Stream Address Bits. The binary value is the number of the data stream for the source of the connection.											
7-0	CAB7-0			Source Channel Address Bits. The binary value is the number of the channel for the source of the connection. When the message mode is enabled, these entire 8 bits are output on the output channel and stream associated with this location.											
Note 1: The Variable delay is only available for odd number output streams but not for the even number output streams. Avoid programming the TM0 and TM1 bits to zero in the connection memory when the destination output streams are STo0, 2, 4, $\ldots, 28$ and 30 . Note 2: The constant delay mode is available for all output streams.															

Table 14 - Connection Memory Bits

Data Rate	SAB4 to SAB0 Bits Used to Determine the Source Stream of the connection	CAB Bits Used to Determine the Source Channel of the Connection
8 Mbps	SAB4 to SAB0 (STi0 to STi31)	CAB6 to CAB0 (128 channel/frame)
16 Mbps	SAB3 to SAB0 (STi0 to STi15)	CAB7 to CAB0 (256 channel/frame)
4 Mbps \& 8 Mbps	SAB4 to SAB0 (STi0 to STi31)	CAB6 to CAB0 (64 or 128 channel/frame)
$16 \mathrm{Mbps} \& 8 \mathrm{Mbps}$	SAB4 to SAB0 (STi0 to STi19)	CAB7 to CAB0 (128 or 256 channel/frame)
4 Mbps	SAB4 to SAB0 (STi0 to STi31)	CAB5 to CAB0 (64 channel/frame)
$2 \mathrm{Mbps} \& 4 \mathrm{Mbps}$	SAB4 to SAB0 (STi0 to STi31)	CAB5 to CAB0 (32 or 64 channel/frame)
2 Mbps	SAB4 to SAB0 (STi0 to STi31)	CAB4 to CAB0 (32 channel/frame)

Table 15 - SAB and CAB Bits Programming for Various Interface Mode

Absolute Maximum Ratings*

	Parameter	Symbol	Min.	Max.	Units
1	Supply Voltage	V_{DD}	-0.3	5.0	V
2	Voltage on any 3.3 V tolerant pin I/O (other than supply pins)	V_{I}	$\mathrm{V}_{\mathrm{SS}}-0.3$	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
3	Voltage on any 5 V tolerant pin I/O (other than sup- ply pins)	V_{I}	$\mathrm{V}_{\mathrm{SS}}-0.3$	5.0	V
4	Continuous Current at digital outputs	I_{0}		20	mA
5	Package power dissipation	P_{D}		1	W
6	Storage temperature	T_{S}	-65	+125	${ }^{\circ} \mathrm{C}$

* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied

Recommended Operating Conditions - Voltages are with respect to ground $\left(\mathrm{V}_{\mathrm{ss}}\right)$ unless otherwise stated.

	Characteristics	Sym.	Min.	Typ.	Max.	Units	Test Conditions
1	Operating Temperature	T_{OP}	-40		+85	${ }^{\circ} \mathrm{C}$	
2	Positive Supply	V_{DD}	3.0		3.6	V	
3	Input High Voltage	V_{IH}	$0.7 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	V	
4	Input High Voltage on 5 V Tolerant Inputs	V_{IH}			5.5	V	
5	Input Low Voltage	V_{IL}	V_{SS}		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V	

DC Electrical Characteristics - Voltages are with respect to ground $\left(\mathrm{V}_{\mathrm{ss}}\right)$ unless otherwise stated.

		Characteristics	Sym.	Min.	Typ.	Max.	Units	Test Conditions
1	NNPUTS	Supply Current	I_{DD}		64	100	mA	Output unloaded
2		Input High Voltage	V_{IH}	$0.7 \mathrm{~V}_{\mathrm{DD}}$			V	
3		Input Low Voltage	V_{IL}			$0.3 \mathrm{~V}_{\mathrm{DD}}$	V	
4		Input Leakage (input pins) Input Leakage (with pull-up or pull-down)	$\begin{aligned} & I_{I L} \\ & I_{B L} \end{aligned}$			$\begin{aligned} & 15 \\ & 50 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$0 \leq<V^{\prime} V_{\text {DD }}$ See Note 1
5		Input Pin Capacitance	C_{1}			10	pF	
6	\bigcirc	Output High Voltage	V_{OH}	$0.8 \mathrm{~V}_{\mathrm{DD}}$			V	$\mathrm{IOH}=10 \mathrm{~mA}$
7	T	Output Low Voltage	$\mathrm{V}_{\text {OL }}$			0.4	V	$\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$
8	U	High Impedance Leakage	l_{0}			5	$\mu \mathrm{A}$	$0<\mathrm{V}<\mathrm{V}_{\mathrm{DD}}$ See Note 1
9	s	Output Pin Capacitance	C_{0}			10	pF	

[^0]AC Electrical Characteristics - Timing Parameter Measurement Voltage Levels

	Characteristics	Sym.	Level	Units	Conditions
1	CMOS Threshold Voltage	V_{TT}	$0.5 \mathrm{~V}_{\mathrm{DD}}$	V	
2	CMOS Rise/Fall Threshold Voltage High	V_{HM}	$0.7 \mathrm{~V}_{\mathrm{DD}}$	V	
3	CMOS Rise/Fall Threshold Voltage Low	V_{LM}	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V	

AC Electrical Characteristics - Frame Pulse and $\overline{\text { CLK }}$

	Characteristic	Sym.	Min.	Typ.	Max.	Units	$\overline{\text { CLK }}$
1	Frame pulse width	$\mathrm{t}_{\text {FPW }}$	55		65	ns	16.384 MHz
2	Frame Pulse Setup time before $\overline{\text { CLK }}$ falling	$\mathrm{t}_{\text {FPS }}$	5			ns	
3	Frame Pulse Hold Time from $\overline{\text { CLK }}$ falling	$\mathrm{t}_{\text {FPH }}$	10			ns	
4	$\overline{\text { CLK Period }}$	t_{CP}	55		70	ns	
5	$\overline{\text { CLK Pulse Width High }}$	t_{CH}	20		40	ns	
6	$\overline{\text { CLK }}$ Pulse Width Low	t_{CL}	20		40	ns	
7	Frame pulse width	$\mathrm{t}_{\text {FPW8 }}$	115		145	ns	8.192 MHz
8	Frame Pulse Setup time before $\overline{\text { CLK }}$ falling	$\mathrm{t}_{\text {FPS } 8}$	5			ns	
9	Frame Pulse Hold Time from $\overline{\text { CLK }}$ falling	$\mathrm{t}_{\text {FPH8 }}$	10			ns	
10	CLK Period	$\mathrm{t}_{\mathrm{CP} 8}$	110		150	ns	
11	$\overline{\text { CLK Pulse Width High }}$	$\mathrm{t}_{\mathrm{CH} 8}$	50		75	ns	
12	$\overline{\text { CLK }}$ Pulse Width Low	$\mathrm{t}_{\text {CL8 }}$	50		75	ns	
13	Clock Rise/Fall Time	$\mathrm{t}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}}$	0		+10	ns	

AC Electrical Characteristics - Serial Streams for ST-BUS

	Characteristic	Sym.	Min.	Typ.	Max.	Units	Test Conditions
1	Input Data Sample Point (Data rate of 16 Mbps)	$\mathrm{t}_{\text {IDS_1 }} 16$		30		ns	
2	Input Data Sample Point (Data rate of 8 Mbps)	$\mathrm{t}_{\text {IDS_8 }}$		91		ns	
3	Input Data Sample Point (Data rate of 4 Mbps)	$\mathrm{t}_{\text {IDS_4 }}$		183		ns	
4	Input Data Sample Point (Data rate of 2 Mbps)	$\mathrm{t}_{\text {IDS_2 }}$		366		ns	
5	STi Set-up Time (Data rate of 16 Mbps)	$\mathrm{t}_{\text {SIS_1 }} 16$	0			ns	
6	STi Hold Time (Date rate of 16 Mbps)	$\mathrm{t}_{\text {SIH_16 }}$	8			ns	
7	STi Set-up Time (Date rate of 2, 4 or 8 Mbps)	$\mathrm{t}_{\text {SIS }}$	0			ns	
8	STi Hold Time (Date rate of 2, 4 or 8 Mbps)	${ }_{\text {tIIH }}$	8			ns	
9	STo Delay - Active to Active	$\mathrm{t}_{\text {SOD }}$	$\begin{gathered} \hline 8 \\ 11 \end{gathered}$		$\begin{aligned} & 30 \\ & 43 \end{aligned}$	ns	$\begin{array}{\|l\|l} \hline \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF} \\ \hline \end{array}$
10	Output Driver Enable (ODE) Delay	tode			35	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF} \text {, }$ See Note 1
11	STo delay - Active to High-Z - High-Z to Active	$\begin{aligned} & \mathrm{t}_{\mathrm{DZ}}, \\ & \mathrm{t}_{\mathrm{zD}} \end{aligned}$			35	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF},$ See Note 1

Note: 1. High Impedance is measured by pulling to the appropriate rail with R_{L}, with timing corrected to cancel time taken to discharge C_{L}

Figure 8 - ST-BUS Timing for Stream rate of 16.384 Mbps

Figure 9 - ST-BUS Timing for Stream rate of 8.192 Mbps when $\overline{\mathrm{CLK}}=16.384 \mathrm{MHz}$

Figure 10 - ST-BUS Timing for Stream rate of 4.096 Mbps when CLK $=16.384 \mathrm{MHz}$

Figure 11 - ST-BUS Timing for Stream rate of 4.096 Mbps when $\overline{\mathrm{CLK}}=8.192 \mathrm{MHz}$

Figure 12 - ST-BUS Timing for Stream rate of 2.048 Mbps when CLK $=16.384 \mathrm{MHz}$

Figure 13 - -BUS Timing for Stream rate of 2.048 Mbps when CLK $=8.192 \mathrm{MHz}$

Figure 14-Serial Output and External Control

Figure 15 - Output Driver Enable (ODE)

AC Electrical Characteristics - Motorola Non-Multiplexed Bus Mode

	Characteristics	Sym.	Min.	Typ.	Max.	Units	Test Conditions
1	$\overline{\mathrm{CS}}$ setup from $\overline{\mathrm{DS}}$ falling	$\mathrm{t}_{\mathrm{CSS}}$	0			ns	
2	$\mathrm{R} / \overline{\mathrm{W}}$ setup from $\overline{\mathrm{DS}}$ falling	$\mathrm{t}_{\text {RWS }}$	10			ns	
3	Address setup from $\overline{\text { DS }}$ falling	$\mathrm{t}_{\text {ADS }}$	2			ns	
4	$\overline{\mathrm{CS}}$ hold after $\overline{\mathrm{DS}}$ rising	$\mathrm{t}_{\mathrm{CSH}}$	0			ns	
5	R/W hold after $\overline{\mathrm{DS}}$ rising	$\mathrm{t}_{\text {RWH }}$	2			ns	
6	Address hold after $\overline{\mathrm{DS}}$ rising	$\mathrm{t}_{\text {ADH }}$	10			ns	
7	Data setup from DTA Low on Read	$\mathrm{t}_{\text {DDR }}$	27			ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
8	Data hold on read	$t_{\text {DHR }}$	12		20	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$ Note 1
9	Data setup on write (register write ${ }^{2}$)	${ }^{\text {t }}$ SSW	0			ns	
10	Valid Data Delay on write (memory write ${ }^{3}$) For 16 Mbps , $16 \& 8 \mathrm{Mbps}, 8 \mathrm{Mbps}, 4 \& 8 \mathrm{Mbps}$ modes For 4 Mbps, $4 \& 2$ Mbps modes For 2 Mbps mode	${ }^{\text {tswD }}$			$\begin{gathered} 50 \\ 85 \\ 185 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	
11	Data hold on write	$\mathrm{t}_{\text {DHW }}$	13			ns	
12a	Acknowledgment Delay: Register RD or WR	$\mathrm{t}_{\text {AKD }}$			55	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
12b	Acknowledgment Delay: Memory RD or WR For $16 \mathrm{Mbps}, 16 \& 8 \mathrm{Mbps}, 8 \mathrm{Mbps}, 4 \& 8 \mathrm{Mbps}$ modes For 4 Mbps, $4 \& 2$ Mbps modes For 2 Mbps mode	$\mathrm{t}_{\text {AKD }}$			$\begin{aligned} & 100 \\ & 140 \\ & 240 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
13	Acknowledgment Hold Time	$\mathrm{t}_{\text {AKH }}$			24	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K},$ Note 1

Note:

1. High Impedance is measured by pulling to the appropriate rail with R_{L}, with timing corrected to cancel time taken to discharge C_{L}.
2. Register write timing refers to the rising edge of $\overline{D S}$ at the end of the write cycle.
3. Memory write timing refers to the falling edge of $\overline{\mathrm{DS}}$ at the beginning of the write cycle.

Figure 16 - Motorola Non-Multiplexed Bus Timing

				－aydd
			عоиегоz	ЭıV0
			98681 L	NOH
			1	ヨnSsi
｜｜ 2002 ı010npuoo！				

O0¢	
	$O / d \theta$
४ ：әроう әбечэед	

10 daqumu ayt $5!\mathrm{N}$
aloos of 70 N
s sing laplos 247 to
$\exists \exists y$ WW 9G＇0 s．
$10+$

For more information about all Zarlink products visit our Web Site at

www.zarlink.com

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's $I^{2} C$ components conveys a licence under the Philips $I^{2} C$ Patent rights to use these components in and $I^{2} C$ System, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips.

Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
Copyright Zarlink Semiconductor Inc. All Rights Reserved.

[^0]: Note 1: Maximum leakage on pins (output or I/O pins in high impedance state) is over an applied voltage (V)

