Product Preview
 TMOS E－FET ${ }^{\text {тм }}$
 High Energy Power FET
 P－Channel Enhancement－Mode Silicon Gate

This advanced high voltage TMOS E－FET is designed to withstand high energy in the avalanche mode and switch efficiently． This new high energy device also offers a drain－to－source diode with fast recovery time．Designed for high voltage，high speed switching applications such as power supplies，PWM motor controls and other inductive loads，the avalanche energy capability is specified to eliminate the guesswork in designs where inductive loads are switched and offer additional safety margin against unexpected voltage transients．
－Avalanche Energy Capability Specified at Elevated Temperature
－Low Stored Gate Charge for Efficient Switching
－Internal Source－to－Drain Diode Designed to Replace External Zener Transient Suppressor－Absorbs High Energy in the Avalanche Mode
－Source－to－Drain Diode Recovery Time Comparable to Discrete Fast Recovery Diode

MAXIMUM RATINGS（ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted）

Rating	Symbol	Value	Unit
Drain－to－Source Voltage	V ${ }_{\text {DSS }}$	500	Vdc
Drain－to－Gate Voltage（ $\mathrm{R}_{\mathrm{GS}}=1.0 \mathrm{M} \Omega$ ）	V ${ }_{\text {DGR }}$	500	Vdc
$\begin{aligned} \hline \text { Gate-to-Source Voltage } & \text { - Continuous } \\ & \text { - Single Pulse }\left(t_{p} \leq 50 \mu s\right) \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{GS}} \\ \mathrm{~V}_{\mathrm{GSM}} \end{gathered}$	$\begin{aligned} & \pm 20 \\ & \pm 40 \end{aligned}$	Vdc
Drain Current — Continuous＠ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ －Continuous＠ $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$ —Single Pulse（ $\mathrm{t}_{\mathrm{p}} \leq 10 \mu \mathrm{~s}$ ）	$\begin{aligned} & \text { ID } \\ & \text { ID } \\ & \text { IDM } \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.8 \\ & 4.0 \end{aligned}$	Adc Apk
Total Power Dissipation＠ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$ Total Power Dissipation＠ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ ，when mounted to minimum recommended pad size	PD	$\begin{gathered} \hline 50 \\ 0.4 \\ 1.75 \end{gathered}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$ Watts
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$

UNCLAMPED DRAIN－TO－SOURCE AVALANCHE CHARACTERISTICS $\left(T_{J}<150^{\circ} \mathrm{C}\right)$

Single Pulse Drain－to－Source Avalanche Energy－Starting $T J=25^{\circ} \mathrm{C}$ $\left(V_{D D}=100 \mathrm{Vdc}, V_{G S}=10 \mathrm{Vdc}\right.$, Peak $\left.\mathrm{I}_{\mathrm{L}}=3.0 \mathrm{Apk}, \mathrm{L}=10 \mathrm{mH}, R_{G}=25 \Omega\right)$	$\mathrm{E}_{\text {AS }}$	45	mJ

THERMAL CHARACTERISTICS

Thermal Resistance — Junction to Case	$R_{\theta J C}$	2.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
— Junction to Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	100	
— Junction to Ambient（1）	$\mathrm{R}_{\theta \mathrm{JA}}$	71.4	
Maximum Lead Temperature for Soldering Purposes， $1 / 8^{\prime \prime}$ from case for 5 seconds	T_{L}	260	${ }^{\circ} \mathrm{C}$

（1）When surface mounted to an FR4 board using the minimum recommended pad size．

This document contains information on a product under development．Motorola reserves the right to change or discontinue this product without notice
E－FET and Designer＇s are trademarks of Motorola，Inc．TMOS is a registered trademark of Motorola，Inc．
thermal－Glad is a trademark of the Bergquist Company．
Preferred devices are Motorola recommended choices for future use and best overall value．
f．dzsc．com

MTD1P50E

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain-to-Source Breakdown Voltage $\left(\mathrm{V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=0.25 \mathrm{mAdc}\right)$ Temperature Coefficient (Positive)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$		TBD		$\begin{aligned} & \mathrm{Vdc} \\ & \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=500 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{DS}}=500 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\right)$	IDSS	-	-	$\begin{gathered} 10 \\ 100 \end{gathered}$	$\mu \mathrm{Adc}$
Gate-Body Leakage Current ($\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{Vdc}, \mathrm{V}_{\mathrm{DS}}=0$)	IGSS	-	-	100	nAdc

ON CHARACTERISTICS*

Gate Threshold Voltage $\left(\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=0.25 \mathrm{mAdc}\right)$ Threshold Temperature Coefficient (Negative)	V_{GS} (th)	2.0	$\begin{gathered} 3.1 \\ \text { TBD } \end{gathered}$	4.0	$\begin{gathered} \mathrm{Vdc} \\ \mathrm{mV} /{ }^{\circ} \mathrm{C} \end{gathered}$
Static Drain-to-Source On-Resistance ($\left.\mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}, \mathrm{I} \mathrm{D}=0.5 \mathrm{Adc}\right)$	R ${ }_{\text {DS }}($ on)	-	12	15	Ohms
$\begin{aligned} & \text { Drain-to-Source On-Voltage (VGS = } 10 \mathrm{Vdc}) \\ & (\mathrm{ID}=1.0 \mathrm{Adc}) \\ & \left(\mathrm{ID}=0.5 \mathrm{Adc}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$		-	$\begin{gathered} 18 \\ 15.8 \end{gathered}$	Vdc
Forward Transconductance ($\mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}$, $\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{Adc}$)	gFS	0.4	0.6	-	mhos

DYNAMIC CHARACTERISTICS

Input Capacitance	$\begin{gathered} \left(\mathrm{V}_{\mathrm{DS}}=\underset{\mathrm{f}}{25 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}}=0 \mathrm{Vdc},\right. \\ \hline \mathrm{MHz}) \end{gathered}$	$\mathrm{C}_{\text {iss }}$	-	TBD	TBD	pF
Output Capacitance		$\mathrm{C}_{\text {oss }}$	-	TBD	TBD	
Transfer Capacitance		Crss	-	TBD	TBD	

SWITCHING CHARACTERISTICS*

Turn-On Delay Time	$\begin{gathered} \left(\mathrm{V}_{\mathrm{DS}}=250 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{Adc},\right. \\ \mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}, \\ \left.\mathrm{R}_{\mathrm{G}}=9.1 \Omega\right) \end{gathered}$	$\mathrm{t}_{\mathrm{d}}(\mathrm{on})$	-	TBD	TBD	ns
Rise Time		tr_{r}	-	TBD	TBD	
Turn-Off Delay Time		$\mathrm{t}_{\mathrm{d} \text { (off) }}$	-	TBD	TBD	
Fall Time		t_{f}	-	TBD	TBD	
Gate Charge	$\begin{gathered} \left(\mathrm{V}_{\mathrm{DS}}=400 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{Adc}\right. \\ \left.\mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}\right) \end{gathered}$	QT	-	TBD	TBD	nC
		Q_{1}	-	TBD	-	
		Q_{2}	-	TBD	-	
		Q_{3}	-	TBD	-	

SOURCE-DRAIN DIODE CHARACTERISTICS

Forward On-Voltage	$\begin{gathered} \left(\mathrm{IS}=1.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}\right) \\ \left(\mathrm{IS}=1.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{TJ}_{\mathrm{J}}=125^{\circ} \mathrm{C}\right) \end{gathered}$	$\mathrm{V}_{\text {SD }}$	-	2.0 TBD	3.5	Vdc
Reverse Recovery Time	$\begin{gathered} \left(\mathrm{I}_{\mathrm{S}}=1.0 \mathrm{Adc},\right. \\ \left.\mathrm{dl}_{\mathrm{S}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}\right) \end{gathered}$	$t_{\text {rr }}$	-	TBD	-	ns
		t_{a}	-	TBD	-	
		t_{b}	-	TBD	-	
Reverse Recovery Stored Charge		QRR	-	TBD	-	$\mu \mathrm{C}$

* Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$.

PACKAGE DIMENSIONS

MTD1P50E

> Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA / EUROPE: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609
INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

