SIEMENS

Bipolar IC

Features

- Few external components
- Frequency and amplitude-stable balanced oscillator for VHF (I and II) and UHF
- Mixer stages with optimized suppression of oscillator and input frequency at IF-output
- Mixer with low intermodulation if large input signals are applied
- Balanced mixer with wide dynamic range and
 low-impedance inputs
- Internal band switch
- Low-noise, internal reference voltage

Type	Ordering Code	Package
MTI 3006X	Q67000-A5152	P-DSO-20-1 (SMD)
MTI 3006X	Q67006-A5152	P-DSO-20-1 Tape \& Reel (SMD)

Functional Description and Application

This integrated circuit permits the design of TV-tuners covering the entire frequency range from $48 \ldots 900 \mathrm{MHz}$ split into 2 parts with 3 frequency bands.
The application is suitable for all tuners in TV-and VCR-sets.

Circuit Description

This IC includes 2 balanced mixers (double balanced mixer/ring mixer), two balanced oscillators for VHF (I and II) and UHF, a reference voltage source and band switch.
Filters between tuner input and IC separate the TV-frequency signal into two bands. The band switch ensures that only one band at a time is activated. In the activated band the signal passes a frontend stage with MOSFET-amplifier, a double-tuned bandpass filter and is then fed to the activated balanced mixer input of the IC which is a low-impedance stage for the VHF- and UHF-range, respectively.
The input signal is mixed there with the oscillator signal from the activated oscillator section and fed to a common IF-stage for all bands.

Pin Configuration

(top view)

Pin Definitions and Functions

Pin No.	Symbol	Function
1	GND	Ground
2	UHF Osc. Input 1	UHF-oscillator amplifier, high-impedance base input, symmetrical to pin 5
3	UHF Osc. Output 1	UHF-oscillator amplifier, high-impedance collector output, symmetrical to pin 4

SIEMENS

Pin Definitions and Functions (cont'd)		
Pin No.	Symbol	Function
4	UHF Osc. Output 2	UHF-oscillator amplifier, high-impedance collector output, symmetrical to pin 3
5	UHF Osc. Input 2	UHF-oscillator amplifier, high-impedance base input, symmetrical to pin 2
6	VHF Osc. Input 1	VHF-oscillator amplifier, high-impedance base input, symmetrical to pin 9
7	VHF Osc. Output 1	VHF-oscillator amplifier, high-impedance collector output, symmetrical to pin 8
8	VHF Osc. Output 2	VHF-oscillator amplifier, high-impedance collector output, symmetrical to pin 7
9	VHF Osc. Input 2	VHF-oscillator amplifier, high-impedance base input, symmetrical to pin 6
10	Band Switching	VHF/UHF-band switching
11	Mixer Output 1	Open collector mixer output, high-impedance, symmetrical to pin 12
12	Mixer Output 2	Open collector mixer output, high-impedance, symmetrical to pin 11
13	+ VS	Supply voltage
14	VHF Input 1	VHF-mixer input low-impedance, symmetrical to pin 15

Block Diagram

SIEMENS

Absolute Maximum Ratings

$T_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Unit
		min.	max.	
Supply voltage	$V_{11,12,13}$	-0.3	14.5	V
Switching voltage	V_{10}	-0.3	V_{S}	V

According to the test circuit 1, only the provided circuitry can be connected to pins 1 to 9 and 14 to 20

Junction temperature	T_{j}		150	${ }^{\circ} \mathrm{C}$
Storage temperature	$T_{\text {stg }}$	-40	125	${ }^{\circ} \mathrm{C}$
Thermal resistance	R_{th}		125	$\mathrm{~K} / \mathrm{W}$

Operating Range

Supply voltage	V_{S}	10	13.2	V
VHF-mixer input frequency range	f_{VHF}	30	500	MHz
UHF-mixer input frequency range	f_{UHF}	30	900	MHz
VHF-oscillator frequency range	f_{OVHF}	30	500	MHz
UHF-oscillator frequency range	f_{OUHF}	30	900	MHz
Ambient temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$

AC/DC Characteristics

$T_{\mathrm{A}}=25^{\circ} \mathrm{C} ; V_{\mathrm{S}}=12 \mathrm{~V}$

Parameter	Symbol	Limit Values		Unit	Test Condition	Test Circuit	
		min.	typ.				1
Current consumption	I_{13}	20	28	36	mA	$V_{10}>1.6 \mathrm{~V}$	1
Oscillator output impedance	$R_{19,20}$ $C_{19,20}$		200		Ω	Parallel equivalent circuit Parallel equivalent circuit	2
Mixer output impedance	$R_{11,12}$ $C_{11,12}$		10		$\mathrm{kF} \Omega$	Parallel equivalent circuit Parallel equivalent circuit	2

VHF-Circuit Section

Switching voltage	V_{10}	1.6		2.3	V		1
Switching current	I_{10}		10	30	$\mu \mathrm{~A}$	$V_{10}=2.1 \mathrm{~V}$	1
Oscillator frequency range	$f_{\text {VHF I }}$ $f_{\text {VHF II }}$	80 140		170 450	MHz MHz	$V_{\mathrm{d}}=0 \ldots 28 \mathrm{~V}$ $V_{\mathrm{d}}=0 \ldots 28 \mathrm{~V}$	1
Oscillator drift	$\Delta f_{\text {VHF }}$ $\Delta f_{\text {VHF }}$ $\Delta f_{\text {VHF }}$		200 400 200	kHz kHz kHz	$V_{\mathrm{S}}=12 \mathrm{~V} \pm 10 \%$ $\Delta T=25^{\circ} \mathrm{C}$ $t=5 \mathrm{~s}$ to 15 min. after switching on	1 1	
Oscillator level	$V_{19,20}$	-17	-14	-11	dBm	voltage on 50 Ω	1
Harmonic wave ratio	$a_{\text {H }}$	10	15		dB		1
Crosstalk $f_{\text {in }} / \mathrm{LO}$	$V_{14 / 15}$	150	1000		mVrms	max. input level for $10-\mathrm{dB}$ distance $f_{\text {in }} / \mathrm{LO}$	1
Mixer gain	$G_{\text {VHF }}$	11	14	17	dB		1
Mixer noise figure	$F_{\text {VHF I }}$ $F_{\text {VHF II }}$		6.5 7.5	11 11	dB dB	VHF 1; DSB VHF 2; DSB	1
Mixer input impedance	$R_{14 / 15}$ $L_{14 / 15}$		25		Ω 10	serial equivalent circuit serial equivalent circuit	1

AC/DC Characteristics (cont'd)
$T_{\mathrm{A}}=25^{\circ} \mathrm{C} ; V_{\mathrm{S}}=12 \mathrm{~V}$

Parameter	Symbol	Limit Values		Unit	Test Condition	Test Circuit
		min.	typ.	max.		

VHF-Circuit Section (cont'd)
(Design Hints only)

IF-suppression	$a_{\text {IF }}$		20	dB	$V_{14 / 15}=80 \mathrm{~dB} \mu \mathrm{~V}$	1
IM2	$\begin{aligned} & a_{\mathrm{IM} 2} \\ & a_{\mathrm{IM} 2} \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 70 \\ & 67 \end{aligned}$	dB dB	$\begin{aligned} & f_{\mathrm{D}}=50 \mathrm{MHz} \\ & f_{\mathrm{U}}=100.5 \mathrm{MHz} \\ & f_{\mathrm{D}}=200 \mathrm{MHz} \\ & f_{\mathrm{U}}=400.5 \mathrm{MHz} \end{aligned}$	3 3
IM3	$\begin{gathered} a_{\text {Iм } 3} \\ a_{\text {Iм } 3} \end{gathered}$	60 60	65 64	dB dB	$\begin{aligned} & f_{\mathrm{D}}=100 \mathrm{MHz} \\ & f_{\mathrm{U} 1}=150 \mathrm{MHz} \\ & f_{\mathrm{U} 2}=160 \mathrm{MHz} \\ & f_{\mathrm{D}}=200 \mathrm{MHz} \\ & f_{\mathrm{U} 1}=250 \mathrm{MHz} \\ & f_{\mathrm{U} 2}=260 \mathrm{MHz} \end{aligned}$	4 4
$N+5$ pulling	$\begin{aligned} & a_{N+5} \\ & a_{N+5} \end{aligned}$	$\begin{array}{\|l} 50 \\ 50 \end{array}$	$\begin{array}{\|l} 60 \\ 60 \end{array}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & f_{\mathrm{D}}=50 \mathrm{MHz} \\ & f_{\mathrm{D}}=200 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$

UHF-Circuit Section

Switching voltage	V_{10}	3.2		$\leq V_{\mathrm{S}}$	V		1
Switching current	I_{10}		60	300	$\mu \mathrm{~A}$	$V_{10}=V_{\mathrm{S}}$	1
Oscillator frequency range	$f_{\text {UHF }}$	440		900	MHz	$V_{\mathrm{d}}=0 \ldots 28 \mathrm{~V}$	1
Oscillator drift	$\Delta f_{\text {UHF }}$ $\Delta f_{\text {UHF }}$ $\Delta f_{\text {UHF }}$			400 800 200	kHz kHz kHz	$V_{\mathrm{S}}=12 \mathrm{~V} \pm 10 \%$ $\Delta T=25^{\circ} \mathrm{C}$ $t=5 \mathrm{~s}$ to 15 min. after switching on	1 1
Oscillator level	$V_{19,20}$	-22	-17	-13	dBm	voltage on 50Ω	1
Harmonic wave ratio	a_{H}	10	20		dB		1
Crosstalk $f_{\text {in }} / \mathrm{LO}$	$V_{16 / 17}$	150	1000		mVrms	max. input level for $10-\mathrm{dB}$ distance $f_{\text {in }} / \mathrm{LO}$	1
Mixer gain	$G_{\text {UHF }}$	11	14	17	dB		1

AC/DC Characteristics (cont'd)
$T_{\mathrm{A}}=25^{\circ} \mathrm{C} ; V_{\mathrm{S}}=12 \mathrm{~V}$

Parameter	Symbol	Limit Values		Unit	Test Condition	Test Circuit	
		min.	typ.	max.			1
Mixer noise figure	$F_{\text {UHF }}$		8	12	dB	DSB	
Mixer input impedance	$R_{16 / 17}$		25		Ω	serial equivalent circuit serial equivalent circuit	2 2

UHF-Circuit Section (cont'd)
(Design Hints only)

IF-suppression	a_{ZF}		20		dB	$V_{16 / 17}=80 \mathrm{~dB} \mu \mathrm{~V}$	1
IM2	$a_{\mathrm{IM} 2}$	60	61		dB	$f_{\mathrm{D}}=400 \mathrm{MHz}$ $f_{\mathrm{U}}=800.5 \mathrm{MHz}$	3
IM3	$a_{\mathrm{IM} 3}$	60	66		dB	$f_{\mathrm{D}}=600 \mathrm{MHz}$ $f_{\mathrm{U} 1}=650 \mathrm{MHz}$ $f_{\mathrm{U} 2}=660 \mathrm{MHz}$ $f_{\mathrm{D}}=850 \mathrm{MHz}$ $f_{\mathrm{U} 1}=800 \mathrm{MHz}$ $f_{\mathrm{U} 2}=790 \mathrm{MHz}$	4
$\mathrm{~N}+5$ pulling	60	70	dB	4			

Test Circuit 1

\qquad

Measurment of the 4 -pole matrix S11, S12, S21, S22 and calculation of the π-equivalent circuit, which follows from that

Test Circuit 2

Test Point	Test Frequency in MHz	Pin \mathbf{x}	Pin y
Oscillator output impedance	100	19	20
Mixer input impedance VHF	100	14	15
Mixer input impedance UHF	600	17	18
Mixer output impedance VHF/UHF	$100 / 600$	11	12

Signals at mixer input pin $14 / 15$ or $16 / 17$

Signals at mixer output pin $11 / 12$

UED06017

Test Circuit 3
 IM2 $\left(f_{\mathrm{u}}-f_{\mathrm{D}}\right)$ Transfer to $f_{\text {IF }}$

Test Circuit 4

IM3 $\left(f_{\mathrm{U} 2}-f_{\mathrm{U} 1}\right)$ Transfer to $f_{\mathrm{IF}} \pm\left(f_{\mathrm{U} 2}-f_{\mathrm{U} 1}\right)$

Signals at mixer input pin $14 / 15$ or $16 / 17$

Signals at mixer output pin 11/12

Test Circuit 5
 N+5 Pulling

Package Outline

Plastic Package, P-DSO-20-1 (SMD)
(Plastic Dual Small Outline Package)

Index Marking

1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Does not include dambar protrusion of 0.05 max. per side

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our
Data Book "Package Information"
SMD = Surface Mounted Device

