PN Unijunction Transistors Silicon PN Unijunction Transistors

．．．designed for use in pulse and timing circults，sensing circuits and thyristor trigger circuits．These devices feature：
－Low Peak Point Current－ $2 \mu \mathrm{~A}$（Max）

－Low Emitter Reverse Current－ 200 nA（Max）

－Passivated Surface for Rellability and Uniformity

＊MAXIMUM RATINGS（TA $=25^{\circ} \mathrm{C}$ unless otherwise noted．）

Rating	Symbol	Value	Unit
Power Dissipation，Note 1	P_{D}	300	mW
RMS Emitter Current	$\mathrm{I}_{\mathrm{E}(\mathrm{RMS})}$	50	mA
Peak Pulse Emitter Current，Note 2	IE	$\mathbf{2}$	Amps
Emitter Reverse Voltage	$\mathrm{V}_{\mathrm{B} 2 \mathrm{E}}$	30	Volts
Interbase Voltage	$\mathrm{V}_{\mathrm{B} 2 \mathrm{~B} 1}$	35	Volts
Operating Junction Temperature Range	T_{J}	-65 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

＊Indicates JEDEC Registered Data．

Notes：1．Derate $3 \mathrm{~mW} / \mathrm{C}$ increase in ambient temperature．The total power dissipation（available power to Emitter and Base－Twol must be limited by the external circuitry．
2．Capacitor discharge－ $\mathbf{1 0} \mu \mathrm{F}$ or less， 30 volts or less．
*ELECTRICAL CHARACTERISTICS ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic		Symbol	Min	Typ	Max	Unit
Intrinsic Standoff Ratio $\left(\mathrm{V}_{\mathrm{B} 2 \mathrm{~B} 1}=10 \mathrm{~V}\right)$, Note 1	$\begin{aligned} & \text { 2N2646 } \\ & \text { 2N2647 } \end{aligned}$	η	$\begin{aligned} & 0.56 \\ & 0.68 \end{aligned}$	-	$\begin{aligned} & 0.75 \\ & 0.82 \end{aligned}$	-
Interbase Resistance $\left(V_{\mathrm{B} 2 \mathrm{~B} 1}=3 V_{1} \mathrm{IE}=0\right)$		rBB	4.7	7	9.1	k ohms
Interbase Resistance Temperature Coefficient $\left(V_{\mathrm{B} 2 \mathrm{~B} 1}=3 \mathrm{~V}, I_{E}=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right)$		$\alpha_{\text {rBB }}$	0.1	-	0.9	$\%{ }^{\circ} \mathrm{C}$
Emitter Saturation Voltage $\left(V_{\mathrm{B} 2 \mathrm{~B} 1}=10 \mathrm{~V}, I_{\mathrm{E}}=50 \mathrm{~mA}\right), \text { Note } 2$		VEB1(sat)	-	3.5	-	Volts
Modulated Interbase Current $\left(V_{\mathrm{B} 2 \mathrm{~B} 1}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=50 \mathrm{~mA}\right)$		$\mathrm{I}_{\mathrm{B} 2}(\mathrm{mod})$	-	15	-	mA
Emitter Reverse Current $\left(V_{B 2 E}=30 V_{1} I_{\mathrm{B} 1}=0\right)$	$\begin{aligned} & \text { 2N2646 } \\ & \text { 2N2647 } \end{aligned}$	leb2o	-	$\begin{array}{r} 0.005 \\ 0.005 \\ \hline \end{array}$	$\begin{gathered} 12 \\ 0.2 \end{gathered}$	$\mu \mathrm{A}$
Peak Point Emitter Current $\left(\mathrm{V}_{\mathrm{B} 2 \mathrm{~B} 1}=25 \mathrm{~V}\right)$	$\begin{aligned} & \text { 2N2646 } \\ & \text { 2N2647 } \end{aligned}$	IP	-	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \end{aligned}$	$\mu \mathrm{A}$
Vallay Point Current $\left(\mathrm{V}_{\mathrm{B} 2 \mathrm{~B} 1}=20 \mathrm{~V}, \mathrm{R}_{\mathrm{B} 2}=100 \mathrm{ohms}\right.$), Note 2	$\begin{aligned} & \text { 2N2646 } \\ & \text { 2N2647 } \end{aligned}$	IV	$\begin{aligned} & 4 \\ & 8 \end{aligned}$	$\begin{gathered} 6 \\ 10 \end{gathered}$	$\stackrel{\rightharpoonup}{18}$	mA
Base-One Peak Pulse Voltage (Note 3, Figure 3)	$\begin{aligned} & \text { 2N2646 } \\ & \text { 2N2647 } \end{aligned}$	VOB1	$\begin{aligned} & 3 \\ & 6 \end{aligned}$	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	二	Volts

*indicates JEDEC Registered Data.
Notes:

1. Intrinsio standoff ratio,
2. Use pulse techniques: $\mathrm{PW} \approx 300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$ to avold $\eta_{\text {, }}$ is defined by equation: internal heating due to interbase modulation which may result in erroneous readings.
$\eta=\frac{V_{P}-V_{F}}{V_{B 2 B 1}}$
3. Base-One Peak Pulse Voltage is measured in circuit of Figure 3. This specification is used to ensure minimum pulse amplitude for
Where $V p=$ Peak Point Emitter Voltage
applications in SCR firing circuits and other types of pulse circulfs.
$V_{\mathrm{E} 2 \mathrm{BI}}=$ Interbase Voltage
$V_{F}=$ Emitter to Base-One Junction Diode Drop $(\approx 0.45 \mathrm{~V}$ @ $10 \mu \mathrm{~A})$

FIGURE 1
UNIJUNCTION TRANSISTOR SYMBOL AND NOMENCLATURE

FIGURE 2
STATIC EMITTER CHARACTERISTIC CURVES

FIGURE 3 - VOB1 TEST CIRCUIT
(Exaggerated to Show Details)

(Typical Relaxation Oscillator) -

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :
www.AllDataSheet.com

100\% Free DataSheet Search Site.

Free Download.
No Register.
Fast Search System.
www.AllDataSheet.com

