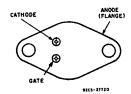
3875081 G E SOLID STATE Silicon Controlled Rectifiers.

01E 17684 T-25-13

2N3668-2N3670, 2N4103

File Number 116


12.5-A Silicon Controlled Rectifiers

For Low-Cost Power-Control and Power-Switching **Applications**

Features:

- Low switching losses
- High di/dt and dv/dt capabilities
- Low leakage currents, both forward and reverse
- Low forward voltage drop at high current levels
- Low thermal resistance

JEDEC TO-204AA

RCA 2N3668*, 2N3669*, 2N3670*, and 2N4103* are all-diffused, three-junction, silicon controlled-rectifiers (SCR's). They are intended for use in power-control and powerswitching applications requiring a blocking voltage capability of up to 600 volts and a forward-current capability of 12.5 amperes (rms value) or 8 amperes (average value) at a case temperature of 80°C.

The 2N3668 is designed for low-voltage power supplies, the 2N3669 for direct operation from 120-volt line supplies, the 2N3670 for direct operation from 240-volt line supplies, and the 2N4103 for high-voltage power supplies.

The 2N3668, 2N3669, 2N3670 and 2N4103 SCR's employ the hermetic JEDEC TO-204AA package.

*Formerly Dev. Types TA2621, TA2598, TA2618, and TA2775, respectively.

Absolute-Maximum Ratings, for Operation with Sinusoidal AC Supply Voltage at a Frequency between 50 and 400 Hz, and with Resistive or Inductive Load

RATINGS	CON	UNITS			
	2N3668	2N3669	2N3670	2N4103	
Transient Peak Reverse Voltage					
(Non-Repetitive), VRM(non-rep)	150	330	660	700	volts
Peak Reverse Voltage (Repetitive), VRM (rep)	100	200	400	600	volts
Peak Forward Blocking Voltage (Repetitive), VFBOM(rep)		200	400	600	volts
Forward Current:					
For case temperature (T _c) of +80°C					
Average DC value at a conduction angle of 180°, IFAV	8	8	8	8	amperes
RMS value, I _{FRMS}		12.5	12.5	12.5	amperes
For other conditions, (See Fig. 4)	12.0	, 2.0	12.0	12.0	шрогоо
Peak Surge Current, i _{FM} (surge):					
For one cycle of applied voltage	200	200	200	200	amperes
For one cycle of applied principal voltage					шротоо
60 Hz (sinusoidal), T _c = 80°C	200	200	200	200	amperes
50 Hz (sinusoidal), T _c = 80°C		170	170	170	amperes
For more than one cycle of applied voltage		See Fig. 1	See Fig. 1	See Fig. 1	
Fusing Current (for SCR protection):					
T _J = -40 to 100°C, t = 1 to 8.3 ms, l ² t	170	170	170	170	ampere ²
13 10 100 0,1 110 0.0 110,1 11111111111111					second
Rate of Change of Forward Current, di/dt	200	200	200	200	amperes/
V _{FB} = V _{BOO} (min. value)		200	200		microsecond
I _{GT} = 200 mA, 0.5 ns rise time					
Gate Power*:					
Peak, Forward or Reverse, for 10 ns duration, Pgm	40	40	40	40	watts
(See Figs. 7 and 9)		,			
Average, Pgay	0.5	0.5	0.5	0.5	watt
Temperature:	-10	5.0	2.0	5.0	
Storage, T _{sto} *	-40 to +125	-40 to +125	-40 to +125	-40 to +125	°C
Operating (Case), Tc	-40 to +100	-40 to +100	-40 to +100	-40 to +100	°Č

^{*}Any values of peak gate current or peak gate voltage to give the maximum gate power is permissible.

*Temperature reference point is within 1/8 in. (3.17 mm) of the center of the underside of unit.

2N3668-2N3670, 2N4103

ELECTRICAL CHARACTERISTICS

Characteristics at Maximum Ratings (unless otherwise specified), and at Indicated Case Temperature (Tc)

CHARACTERISTICS	CONTROLLED-RECTIFIER TYPES									UNITS			
	2N3688			2N3669		2N3670)	2N4103				
	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	
Peak Repetitive Blocking Voltage,					Ì								
VDROM			Ì					l	Į		ĺ		
At T _c = +100°C	100	–		200	-	-	400	-	-	600	_	-	voits
Peak Blocking Current, at T _c = +100°C:				1	l	١		۱.,	١.			4	
Forward, IDOM	_	0.2	2		0.25	2.5	_	0.3	3	-	0.35	4	mA
$V_D = V_{DROM}$	ļ .				١	١		١		Ì	0.3	3	mA
Reverse, Inom	-	0.05	1	-	0.1	1.25	-	0.2	1.5	_	0.3	3	mA
$V_R = V_{RROM}$	1	l		ĺ						ļ	1		
Forward Voltage Drop, V _F	1		1							1		l	
At a Forward Current of 25 amperes and	t					١			١.,		1.5	1.8	volts
a T _c = +25°C (See Fig. 2)	-	1.5	1.8	_	1.5	1.8		1.5	1.8		1.5	1.0	Voits
DC Gate-Trigger Current, Ior:	1 .	1	١	١.		۱	١.,		40	1	20	40	mA (dc)
At T _c = +25°C (See Fig. 9)	1	20	40	1	20	40	1	20	40	'	20	40	IIIA (GC)
Gate-Trigger Voltage, Vot:		l	١.			١.			2	_	1.5	2	volts (dc)
At T _c = +25°C (See Fig. 9)	-	1.5	2	-	1.5	2	-	1.5	2	_	1.5		Voits (dc)
Holding Current, Ino:	١			۱.,			0.5	25	50	0.5	25	50	l mA
At T _c = +25°C	0.5	25	50	0.5	25	50	0.5	25	50	0.5	20	1 30	1117
Critical Rate of Applied Forward Voltage,	١		1		100		10	100	_	10	100	l	volts/
Critical dv/dt	10	100	-	10	100	-	וו	100	-	"	100	-	micro-
V _{FB} ==V _{BOO} (min. value), exponential rise,	1	Ì	1						1		1		second
T _c = +100°C	1		ļ		ļ]		ĺ		1
Turn-On Time, ton							1				1	1	
(Delay Time + Rise Time)	-	1.25		-	1.25	-		1.25	-	-	1.25	-	micro-
,	1	1]	1	İ					i	1	seconds
$V_D = V_{DROM} i_T = 8$ amperes,	1		1	1						i	Į.	1	
$I_G = 200 \text{ mA}$, 0.1 μ s rise time,		1	1					1					
$T_C = +25$ °C	1								1		1		
Turn-Off Time, torr, (Reverse Recovery		1		İ		1				1	۱		
Time + Gate Recovery Time)	-	20	50	_	20	50	-	20	50	-	20	50	micro- seconds
i _F = 8 amperes, 50 ns pulse width,		1					İ				İ		
$dv_{FB}/dt = 20 \text{ v/}\mu\text{s},$	1		ł	1	1	i						ł	İ
$di_{\mu}/dt = 30 \text{ A}/\mu\text{s}, i_{\text{OT}} = 200 \text{ mA},$			1		1		1		1	1			
$a_{1}/a_{1} = 30 \text{ A}/\mu \text{s}, t_{01} = 200 \text{ mA},$ $T_{C} = +80^{\circ}\text{C}$		1		1						ĺ			1
Thermal Resistance,		1	1	1				1	1				
Junction-to-Case	1_	l	1.7	l _		1.7	_		1.7	_	_	1.7	°C/W
JUNCTION-TO-CHRG	1 -	1 -	1 "	1 -	1 -	1 '''	1	1	1 '''	1	L	L	

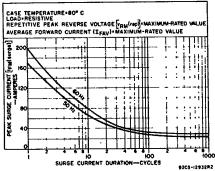


Fig. 1 — Peak surge current vs. surge current duration.

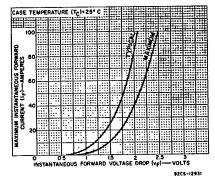


Fig. 2 — Instantaneous forward current vs. instantaneous forward voltage drop.

3875081 G E SOLID STATE
Silicon Controlled Rectifiers

01E 17686 D T-

DT-25-13

2N3668-2N3670, 2N4103

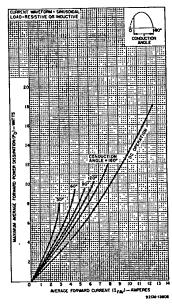


Fig. 3 — Power dissipation vs. forward current.

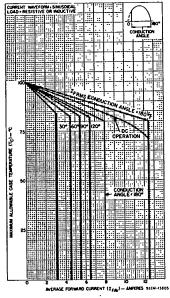


Fig. 4 — Maximum allowable case temperature vs. average forward current.

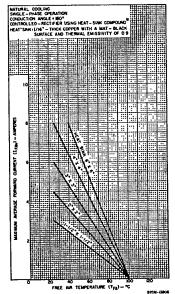


Fig. 5 — Natural-cooling operation guidance

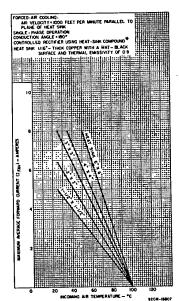


Fig. 6 — Forced-air cooling operation guidance chart.

Daw Corning 340 Silicon Heat Sink Compound, or Equivalent.

3875081 G E SOLID STATE

01E 17687 D T-Z5-/3
Silicon Controlled Rectifiers

2N3668-2N3670, 2N4103

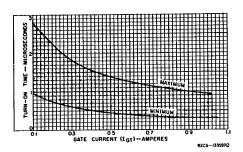


Fig. 7 — Turn-on time vs. gate current.

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com