查询2N6508供应商

捷多邦,专业PCB打样工厂,24小时加急出货

2N6504 Series

Preferred Device

Silicon Controlled Rectifiers

Reverse Blocking Thyristors

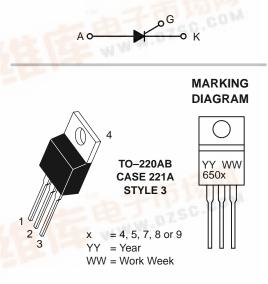
Designed primarily for half-wave ac control applications, such as motor controls, heating controls and power supply crowbar circuits.

- Glass Passivated Junctions with Center Gate Fire for Greater Parameter Uniformity and Stability
- Small, Rugged, Thermowatt Constructed for Low Thermal Resistance, High Heat Dissipation and Durability
- Blocking Voltage to 800 Volts
- 300 A Surge Current Capability
- Device Marking: Logo, Device Type, e.g., 2N6504, Date Code

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
*Peak Repetitive Off–State Voltage (Note 1.) (Gate Open, Sine Wave 50 to 60 Hz, $T_J = 25$ to 125° C)	V _{DRM,} V _{RRM}	DOM NOS	Volts
2N6504 2N6505 2N6507 2N6508 2N6508 2N6509	0256.	50 100 400 600 800	
On-State RMS Current (180° Conduction Angles; T _C = 85°C)	I _{T(RMS)}	25	A
Average On-State Current (180° Conduction Angles; $T_C = 85^{\circ}C$)	I _{T(AV)}	16	A
Peak Non-repetitive Surge Current (1/2 Cycle, Sine Wave 60 Hz, T _J = 100°C)	I _{TSM}	250	A
Forward Peak Gate Power (Pulse Width ≤ 1.0 μs, T _C = 85°C)	Р _{GM}	20	Watts
Forward Average Gate Power (t = 8.3 ms, $T_C = 85^{\circ}C$)	P _{G(AV)}	0.5	Watts
Forward Peak Gate Current (Pulse Width \leq 1.0 µs, T _C = 85°C)	I _{GM}	2.0	А
Operating Junction Temperature Range	TJ	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

*Indicates JEDEC Registered Data


1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

ON Semiconductor

http://onsemi.com

SCRs 25 AMPERES RMS 50 thru 800 VOLTS

PIN ASSIGNMENT				
1 Cathode				
2 Anode				
3 Gate				
4	Anode			

ORDERING INFORMATION

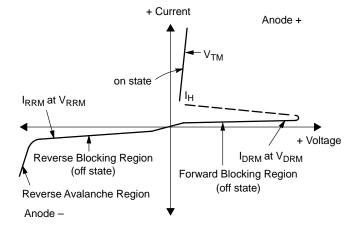
Device	Package	Shipping
2N6504	TO220AB	500/Box
2N6505	TO220AB	500/Box
2N6507	TO220AB	500/Box
2N6508	TO220AB	500/Box
2N6509	TO220AB	500/Box

***THERMAL CHARACTERISTICS**

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	1.5	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	ΤL	260	°C

ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit		
OFF CHARACTERISTICS							
*Peak Repetitive Forward or Reverse Blocking Current (V _{AK} = Rated V _{DRM} or V _{RRM} , Gate Open)	T _J = 25°C T _J = 125°C	I _{DRM} , I _{RRM}			10 2.0	μA mA	
ON CHARACTERISTICS							
*Forward On–State Voltage (Note 2.) (I _{TM} = 50 A)		V _{TM}	-	-	1.8	Volts	
*Gate Trigger Current (Continuous dc) (V _{AK} = 12 Vdc, R _L = 100 Ohms)	$T_{\rm C} = 25^{\circ}{\rm C}$ $T_{\rm C} = -40^{\circ}{\rm C}$	I _{GT}		9.0 —	30 75	mA	
*Gate Trigger Voltage (Continuous dc) (V_{AK} = 12 Vdc, R _L = 100 Ohms, T _C = -40°C)		V _{GT}	-	1.0	1.5	Volts	
Gate Non-Trigger Voltage (V_{AK} = 12 Vdc, R_L = 100 Ohms, T_J = 125°C)		V_{GD}	0.2	-	-	Volts	
*Holding Current (V _{AK} = 12 Vdc, Initiating Current = 200 mA,	$T_C = 25^{\circ}C$	Ι _Η	-	18	40	mA	
Gate Open)	$T_C = -40^{\circ}C$		-	-	80		
*Turn-On Time (I _{TM} = 25 A, I _{GT} = 50 mAdc)		t _{gt}	-	1.5	2.0	μs	
Turn-Off Time (V_{DRM} = rated voltage) (I_{TM} = 25 A, I_R = 25 A) (I_{TM} = 25 A, I_R = 25 A, T_J = 125°C)		tq		15 35		μs	


Critical Rate of Rise of Off-State Voltage	dv/dt	-	50	-	V/µs
(Gate Open, Rated V _{DRM} , Exponential Waveform)					

*Indicates JEDEC Registered Data.

2. Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2%.

Voltage Current Characteristic of SCR

Symbol	Parameter
V _{DRM}	Peak Repetitive Off State Forward Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Off State Reverse Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Peak On State Voltage
Ι _Η	Holding Current

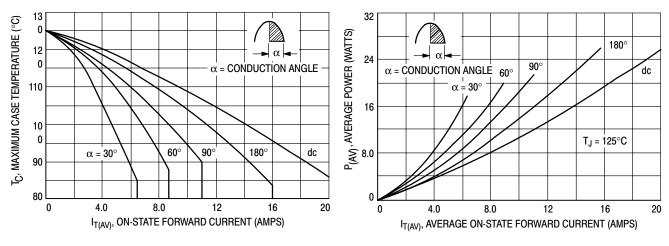
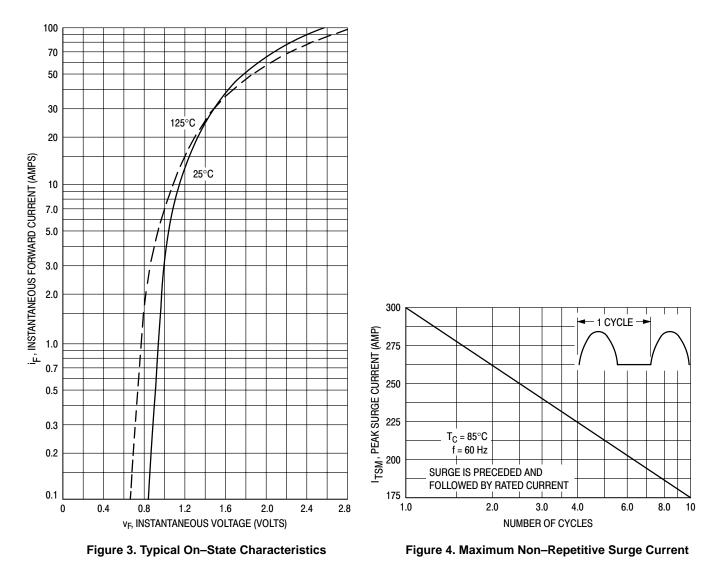



Figure 2. Maximum On–State Power Dissipation

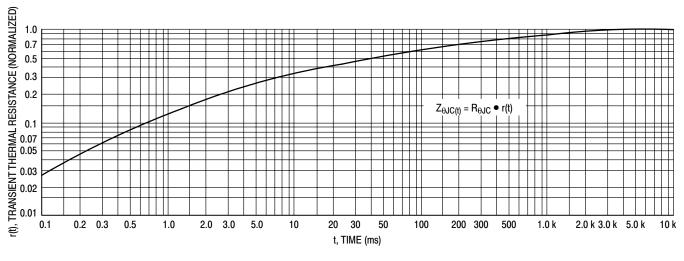
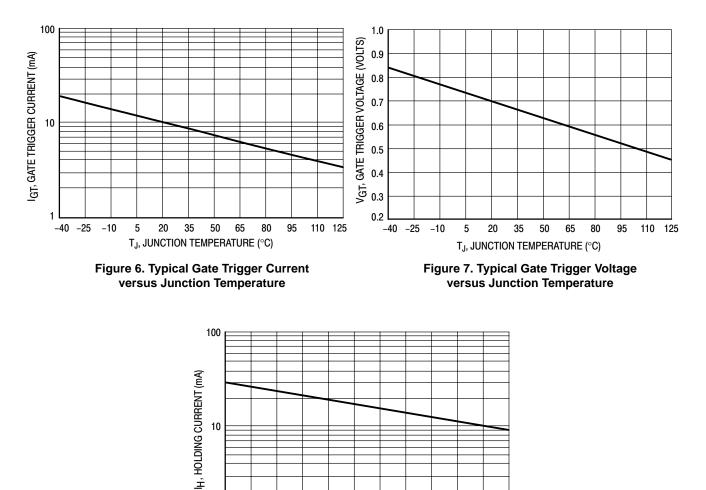
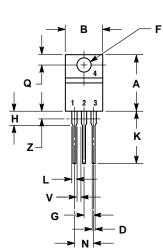



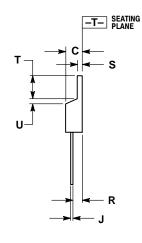
Figure 5. Thermal Response

TYPICAL TRIGGER CHARACTERISTICS

1 _____

-10


5 20 35 50 65 80 95


T_J, JUNCTION TEMPERATURE (°C) Figure 8. Typical Holding Current versus Junction Temperature 110 125

PACKAGE DIMENSIONS

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
ſ	0.014	0.022	0.36	0.55
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
Ν	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
۷	0.045		1.15	
Ζ		0.080		2.04

STYLE 3: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE

<u>Notes</u>

ON Semiconductor and **W** are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada N. American Technical Support: 800–282–9855 Toll Free USA/Canada

- EUROPE: LDC for ON Semiconductor European Support German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit–german@hibbertco.com
- French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET) Email: ONlit–french@hibbertco.com
- English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com Toll–Free from Mexico: Dial 01–800–288–2872 for Access – then Dial 866–297–9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.