

### 1N957B THRU 1N992B

#### 0.5W SILICON ZENER DIODES



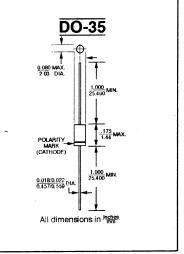
#### **FEATURES**

- \* 6.8 to 200V zener voltage range
- \* Metallurgically bonded device types
- \* Consult factory for voltages above 200V

#### **MECHANICAL CHARACTERISTICS**

- \* CASE: Hermetically sealed glass case. DO 35.
- \*FINISH: All external surfaces are corrosion resistant and leads solderable.
- \* THERMAL RESISTANCE: 200°C/W(Typical) junction to lead at 0.375 inches from body. Metallurgically bonded DO 35, exhibit less than 100°C/W at zero distance from body.
- \* POLARITY: banded end is cathode.
- \* WEIGHT: 0.2 grams
- \* MOUNTING POSITIONS: Any

#### **MAXIMUM RATINGS**


Steady State Power Dissipation: 500mW

Operating and Storage temperature: -65°Cto + 175°C

Derating Factor Above 50°C:4.0mW/°C

Forward Voltage @ 200mA:1.5 Volts

#### VOLTAGE RANGE 6.8 to 200 Volts

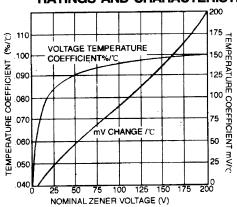


#### **ELECTRICAL CHARCTERISTICS** @ 25°C

| JEDEC<br>TYPE NO.<br>(Note 1)                                  | NOMINAL<br>ZENER<br>VOLTAGE<br>(Note 2)<br>Vz | ZENER<br>TEST<br>CURRENT<br>IZT             | MAX. ZENER IMPEDANCE (Note 3) ZZT @ ZZT ZZK @ ZZK |                                              |                                        | MAX. DC<br>ZENER<br>CURRENT<br>(Note 4) | MAX. SURGE<br>CURRENT<br>(RECURRENT)<br>(Note 5)<br>IZ(SURGE) | MAX. REVERSE LEAKAGE CURRENT IR @ IR |                                                  | MAX. TEMP.<br>COEFFICIENT                           |
|----------------------------------------------------------------|-----------------------------------------------|---------------------------------------------|---------------------------------------------------|----------------------------------------------|----------------------------------------|-----------------------------------------|---------------------------------------------------------------|--------------------------------------|--------------------------------------------------|-----------------------------------------------------|
|                                                                | VOLTS                                         | mA                                          | OHMS                                              | OHMS                                         | mA                                     | mA.                                     | mA .                                                          | μА                                   | VOLTS                                            | %/℃                                                 |
| 1 N957B<br>1 N958B<br>1 N959B<br>1 N960B<br>1 N961B            | 6.8<br>7.5<br>8.2<br>9.1<br>10                | 18.5<br>16.5<br>15.0<br>14.0<br>12.5        | 4.5<br>5.5<br>6.5<br>7.5<br>8.5                   | 700<br>700<br>700<br>700<br>700<br>700       | 1.0<br>.5<br>.5<br>.5<br>.25           | 55<br>50<br>45<br>41<br>38              | 300<br>275<br>250<br>225<br>200                               | 150<br>75<br>50<br>25<br>10          | 5.2<br>5.7<br>6.2<br>6.9<br>7.6                  | +0.05<br>0.058<br>+0.065<br>+0.068<br>+0.075        |
| 1 N962 B<br>1 N963 B<br>1 N964 B<br>1 N965 B<br>1 N966 B       | 11<br>12<br>13<br>15<br>16                    | 11.5<br>10.5<br>9.5<br>8.5<br>7.8           | 9.5<br>11.5<br>13.0<br>16<br>17                   | 700<br>700<br>700<br>700<br>700<br>700       | .25<br>.25<br>.25<br>.25<br>.25        | 32<br>31<br>28<br>25<br>24              | 175<br>160<br>150<br>130<br>120                               | 55555                                | 8.4<br>9.1<br>9.9<br>11.4<br>12.2                | + 0.076<br>0.077<br>0.079<br>+ 0.082<br>+ 0.083     |
| 1 N967B<br>1 N968B<br>1 N969B<br>1 N970B<br>1 N971B            | 18<br>20<br>22<br>24<br>27                    | 7.0<br>6.2<br>5.6<br>5.2<br>4.6             | 21<br>25<br>29<br>33<br>41                        | 750<br>750<br>750<br>750<br>750<br>750       | .25<br>.25<br>.25<br>.25<br>.25        | 20<br>18<br>16<br>15<br>13              | 110<br>100<br>90<br>80<br>70                                  | 55555                                | 13.7<br>15.2<br>16.7<br>18.2<br>20.6             | + 0.085<br>+ 0.086<br>+ 0.087<br>+ 0.088<br>+ 0.090 |
| 1N972B<br>1N973B<br>1N974B<br>1N975B<br>1N976B                 | 30<br>33<br>36<br>39<br>43                    | 4.2<br>3.8<br>3.4<br>3.2<br>3.0             | 49<br>58<br>70<br>80<br>93                        | 1000<br>1000<br>1000<br>1000<br>1500         | .25<br>.25<br>.25<br>.25<br>.25        | 12<br>11<br>10<br>9.5<br>8.8            | 65<br>66<br>55<br>46<br>44                                    | 5<br>5<br>5<br>5                     | 22.8<br>25.1<br>27.4<br>29.7<br>32.7             | +0.091<br>+0.092<br>+0.093<br>+0.094<br>+0.095      |
| 1N977B<br>1N978B<br>1N979B<br>1N990B<br>1N981B                 | 47<br>51<br>56<br>62<br>68                    | 2.7<br>2.5<br>2.2<br>2.0<br>1.8             | 105<br>125<br>150<br>185<br>230                   | 1500<br>1500<br>2000<br>2000<br>2000<br>2000 | .25<br>.25<br>.25<br>.25<br>.25        | 7.9<br>7.4<br>6.8<br>6.0<br>5.5         | 40<br>37<br>35<br>30<br>28                                    | 5<br>5<br>5<br>5<br>5                | 35.8<br>38.8<br>42.6<br>47.1<br>51.7             | + 0.095<br>+ 0.096<br>+ 0.096<br>+ 0.097<br>+ 0.097 |
| 1 N962 B<br>1 N963 B<br>1 N964 B<br>1 N965 B<br>1 N966 B       | 75<br>82<br>91<br>100<br>110                  | 1.7<br>1.5<br>1.4<br>1.3<br>1.1             | 270<br>330<br>400<br>500<br>750                   | 2000<br>3000<br>3000<br>3000<br>4000         | .25<br>.25<br>.25<br>.25<br>.25        | 5.0<br>4.6<br>4.1<br>3.7<br>3.3         | 26<br>23<br>21<br>18<br>16                                    | 5<br>5<br>5<br>5                     | 56.0<br>62.2<br>69.2<br>76.0<br>83.6             | +0.098<br>+0.098<br>+0.099<br>+0.11<br>+0.11        |
| 1 N987B<br>1 N988B<br>1 N989B<br>1 N990B<br>1 N991B<br>1 N992B | 120<br>130<br>150<br>160<br>180<br>200        | 1.0<br>0.95<br>0.85<br>0.80<br>0.68<br>0.66 | 900<br>1100<br>1500<br>1700<br>2200<br>2500       | 4500<br>5000<br>6000<br>6500<br>7100<br>8000 | .25<br>.25<br>.25<br>.25<br>.25<br>.25 | 3.1<br>2.7<br>2.4<br>2.2<br>2.0<br>1.8  | 15<br>13<br>12<br>11<br>10<br>9                               | 5<br>5<br>5<br>5<br>5<br>5           | 91.2<br>98.8<br>114.0<br>121.6<br>136.8<br>152.0 | +0.11<br>+0.11<br>+0.11<br>+0.11<br>+0.11<br>+0.11  |

NOTE 1 The JEDEC type numbers shown (B suffix) have a  $\pm$  5% tolerance on nominal zener voltage. The suffix A is used to identify  $\pm$  10% tolerance; suffix C is used to identify  $\pm$  2%; and suffix D is used to identify  $\pm$  1% tolerance; no suffix indicatex  $\pm$  20% tolerance.

**NOTE** 2 Zener voltage ( $V_Z$ ) is measured after the test current has been applied for 20  $\pm 5$  seconds. The device shall be suspended by its leads with the inside edge of the mounting clips between 375" and 500" from the body. Mounting clips shall be maintained at a temperature of 25  $\pm 8/-2^{\circ}C$ .


**NOTE** 3 The zener impedance is derived from the 60 cycle A. C. voltage, which results when an A. C. current having an R. M. S. value equal to 10% of the D. C. zener current ( $I_{ZT}$  or  $I_{ZK}$ ) is superimposed on  $I_{ZT}$  or  $I_{ZT}$ . Zener impedance is measured at 2 points to insure a sharp knee on the breakdown curve and to eliminate unstable units.

\* JEDEC Registered Data

**NOTE** 4 The values of I<sub>ZM</sub> are calculated for a ±5% tolerance on nominal zener voltage. Allowance has been made for the rise in zener voltage above V<sub>ZT</sub> which results from zener impedance and the increase in junction temperature as power dissipation approaches 400mW. In the case of individual diodes I<sub>ZM</sub> is that value of current which results in a dissipation of 400 mW at 75°C lead temperature at 3/8" from body. **NOTE** 5 Surge is 1/2 square wave or equivalent sine wave pulse of 1/120 sec. duration.



### RATINGS AND CHARACTERISTIC CURVES (1N957B THRU 1N992B)



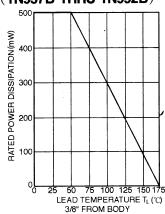



FIGURE 1

ZENER VOLTAGE TEMPERATURE COEFF. vs.

ZENER VOLTAGE

FIGURE 2 POWER DERATING CURVE

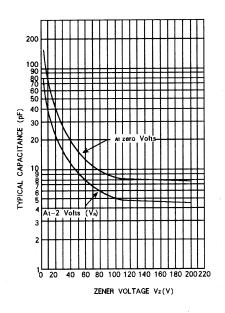



FIGURE 3

CAPACITANCE vs. ZENER VOLTAGE

(TYPICAL)

# This datasheet has been download from:

## www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com