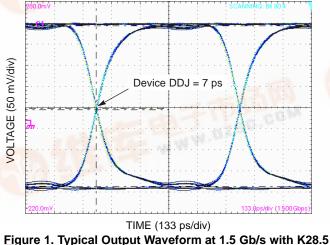
3.3 V, 1.5 Gb/s Dual AnyLevel™ to LVDS Receiver/Driver/Buffer/ Translator

Description

NB4N855S is a clock or data Receiver/Driver/Buffer/Translator capable of translating AnyLevelTM input signal (LVPECL, CML, HSTL, LVDS, or LVTTL/LVCMOS) to LVDS. Depending on the distance, noise immunity of the system design, and transmission line media, this device will receive, drive or translate data or clock signals up to 1.5 Gb/s or 1.0 GHz, respectively. This device is pin–for–pin plug in compatible to the SY55855V in a 3.3 V applications.

The NB4N855S has a wide input common mode range of GND + 50 mV to $V_{CC} - 50 \text{ mV}$. This feature is ideal for translating differential or single–ended data or clock signals to 350 mV typical LVDS output levels.


The device is offered in a small 10 lead MSOP package. NB4N855S is targeted for data, wireless and telecom applications as well as high speed logic interface where jitter and package size are main requirements.

Application notes, models, and support documentation are available at www.onsemi.com.

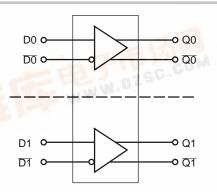
Features

dzsc.com

- Guaranteed Input Clock Frequency up to 1.0 GHz
- Guaranteed Input Data Rate up to 1.5 Gb/s
- 490 ps Maximum Propagation Delay
- 1.0 ps Maximum RMS Jitter
- 180 ps Maximum Rise/Fall Times
- Single Power Supply; $V_{CC} = 3.3 \text{ V} \pm 10\%$
- Temperature Compensated TIA/EIA–644 Compliant LVDS Outputs
- GND + 50 mV to V_{CC} 50 mV V_{CMR} Range

²DF(V_{INPP} = 100 mV, Input Signal DDJ = 24 ps)

,24小时加急出货


ON Semiconductor®

专业PCB打样工厂

http://onsemi.com

*For additional marking information, refer to Application Note AND8002/D.

Functional Block Diagram

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

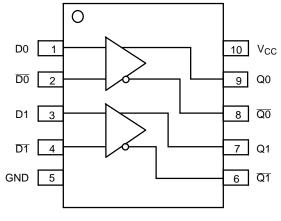


Figure 2. Pin Configuration and Block Diagram (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	I/O	Description
1	D0	LVPECL, CML, LVCMOS, LVTTL, LVDS	Noninverted Differential Clock/Data D0 Input.
2	DO	LVPECL, CML, LVCMOS, LVTTL, LVDS	Inverted Differential Clock/Data D0 Input.
3	D1	LVPEL, CML, LVDS LVCMOS, LVTTL	Noninverted Differential Clock/Data D1 Input.
4	D1	LVPECL, CML, LVDS LVCMOS LVTTL	Inverted Differential Clock/Data D1 Input.
5	GND	-	Ground. 0 V.
6	Q1	LVDS Output	Inverted $\overline{Q1}$ output. Typically loaded with 100 Ω receiver termination resistor across differential pair.
7	Q1	LVDS Output	Noninverted Q1 output. Typically loaded with 100 Ω receiver termination resistor across differential pair.
8	<u>Q0</u>	LVDS Output	Inverted $\overline{\text{Q0}}$ output. Typically loaded with 100 Ω receiver termination resistor across differential pair.
9	Q0	LVDS Output	Noninverted Q0 output. Typically loaded with 100 Ω receiver termination resistor across differential pair.
10	V _{CC}	-	Positive Supply Voltage.

Table 2. ATTRIBUTES

Charact	Value	
Moisture Sensitivity (Note 1)	Level 1	
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V–0 @ 0.125 in
ESD Protection	Human Body Model Machine Model Charged Device Model	> 2 kV > 200 V > 1 kV
Transistor Count	281	
Meets or exceeds JEDEC Spec		

1. For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V		3.8	V
VI	Positive Input	GND = 0 V	$V_{I} = V_{CC}$	3.8	V
I _{IN}	Input Current Through R_T (50 Ω Resistor)	Static Surge		35 70	mA mA
I _{OSC}	Output Short Circuit Current Line-to-Line (Q to \overline{Q}) Line-to-End (Q or \overline{Q} to GND)	Q or \overline{Q} to GND Q to \overline{Q}	Continuous Continuous	12 24	mA
T _A	Operating Temperature Range	Micro 10		-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 2)	0 lfpm 500 lfpm	Micro 10 Micro 10	177 132	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	1S2P (Note 4)	Micro 10	40	°C/W
T _{sol}	Wave Solder Pb Pb-Free	<3 Sec @ 248°C <3 Sec @ 260°C		265 265	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 2. JEDEC standard multilayer board – 1S2P (1 signal, 2 power).

Table 4. DC CHARACTERISTICS, CLOCK INPUTS, LVDS OUTPUTS V_{CC} = 3.0 V to 3.6 V, GND = 0 V, T_A = -40°C to +85°C

Symbol	Characteristic	Min	Тур	Max	Unit
I _{CC}	Power Supply Current (Note 3)		40	53	mA
DIFFERE	NTIAL INPUTS DRIVEN SINGLE-ENDED (Figures 10 and 12)				
V _{th}	Input Threshold Reference Voltage Range (Note 4)	GND +100		V _{CC} – 100	mV
VIH	Single-ended Input HIGH Voltage	V _{th} + 100		V _{CC}	mV
V _{IL}	Single-ended Input LOW Voltage	GND		V _{th} – 100	mV
DIFFERE	NTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 11 and 13)			·	
V _{IHD}	Differential Input HIGH Voltage	100		V _{CC}	mV
V _{ILD}	Differential Input LOW Voltage	GND		V _{CC} – 100	mV
V _{CMR}	Input Common Mode Range (Differential Configuration)	GND + 50		V _{CC} – 50	mV
V _{ID}	Differential Input Voltage (V _{IHD} – V _{ILD})	100		V _{CC}	mV
LVDS OU	TPUTS (Note 5)			·	
V _{OD}	Differential Output Voltage	250		450	mV
ΔV_{OD}	Change in Magnitude of V _{OD} for Complimentary Output States (Note 6)	0	1.0	25	mV
V _{OS}	Offset Voltage (Figure 9)	1125		1375	mV
ΔV_{OS}	Change in Magnitude of V_{OS} for Complimentary Output States (Note 6)	0	1.0	25	mV
V _{OH}	Output HIGH Voltage (Note 7)		1425	1600	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

900

1075

mV

3. Dx/Dx at the DC level within V_{CMR} and output pins loaded with R_L = 100 Ω across differential.

V_{th} is applied to the complementary input when operating in single–ended mode.
 LVDS outputs require 100 Ω receiver termination resistor between differential pair. See Figure 8.

6. Parameter guaranteed by design verification not tested in production. 7. $V_{OH}max = V_{OS}max + \frac{1}{2} V_{OD}max$. 8. $V_{OL}max = V_{OS}min - \frac{1}{2} V_{OD}max$.

Output LOW Voltage (Note 8)

VOL

85°C

Тур

350

300

2.5

410

8

10

20

0.5

0.5

6

7

10

20

110

Max

490

45

35

100

1

15

20

25

40

Vcc GND

180

Unit

mV

Gb/s

ps

ps

ps

mV

ps

–40°C 25°C Min Тур Max Min Max Min Тур Symbol Characteristic Output Voltage Amplitude (@ $V_{INPPMIN}$)f_{in} \leq 1.0 GHz 230 350 230 350 230 VOUTPP (Figure 3) fin= 1.5 GHz 200 300 200 300 200 **f**DATA Maximum Operating Data Rate 1.5 2.5 1.5 2.5 1.5 330 410 490 330 410 490 330 Differential Input to Differential Output t_{PLH}, **t**PHL Propagation Delay Duty Cycle Skew (Note 10) 45 8 45 8 **t**SKFW Within – Device Skew (Note 11) 10 35 10 35 100 Device to Device Skew (Note 12) 20 20 100

 $f_{in} = 1.0 \text{ GHz}$

 $f_{in} = 1.5 \text{ GHz}$

 $f_{DATA} = 622 \text{ Mb/s}$

 $f_{DATA} = 1.5 \text{ Gb/s}$

f_{DATA} = 2.488 Gb/s

Table 5. AC CHARACTERISTICS $V_{CC} = 3.0 \text{ V}$ to 3.6 V, GND = 0 V; (Note 9)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

100

50

0.5

0.5

6

7

10

20

110

15

20

25

40

Vcc

GND

180

0.5

0.5

6 7

10

20

110

100

50

15

20

25

40

V_{CC}– GND

180

100

50

9. Measured_by forcing V_{INPPMIN} with 50% duty cycle clock source and V_{CC} – 1400 mV offset. All loading with an external R_L = 100 Ω across "D" and " \overline{D} " of the receiver. Input edge rates 150 ps (20%–80%).

10. See Figure 7 differential measurement of $t_{skew} = |t_{PLH} - t_{PHL}|$ for a nominal 50% differential clock input waveform @ 250 MHz. 11. The worst case condition between Q0/Q0 and Q1/Q1 from either D0/D0 or D1/D1, when both outputs have the same transition.

Q. Q

12. Skew is measured between outputs under identical transition @ 250 MHz.

13. RMS jitter with 50% Duty Cycle clock signal.

14. Deterministic jitter with input NRZ data at PRBS 2²³-1 and K28.5.

RMS Random Clock Jitter (Note 13)

Crosstalk Induced Jitter (Note 15)

(Differential Configuration) (Note 16)

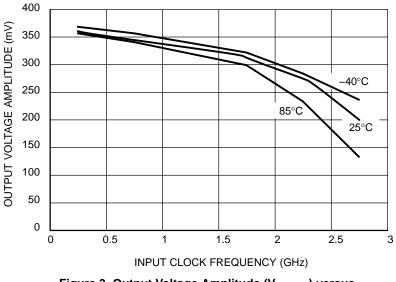
Output Rise/Fall Times @ 250 MHz

Input Voltage Swing/Sensitivity

(20% - 80%)

Deterministic Jitter (Note 14)

tJITTER


VINPP

tr

tf

15. Crosstalk Induced Jitter is the additive Deterministic jitter to channel one with channel two active both running at 622 Gb/s PRBS 2²³ –1 as an asynchronous signals.

16. Input voltage swing is a single-ended measurement operating in differential mode.

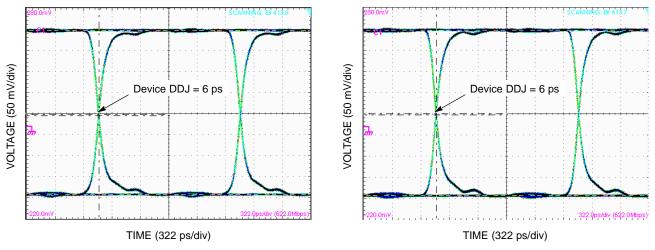
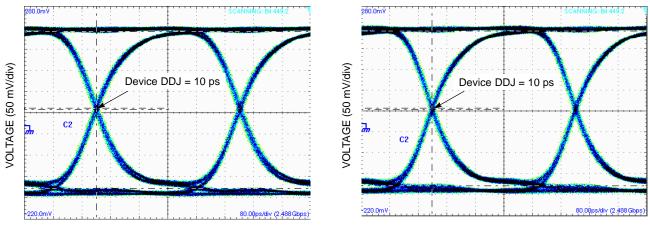



Figure 4. Typical Output Waveform at 1.5 Gb/s with 2^{23-1} (V_{INPP} = 100 mV (left) & V_{INPP} = 400 mV (right), Input Signal DDJ = 24 ps)

TIME (80 ps/div)

TIME (80 ps/div)

Figure 5. Typical Output Waveform at 2.488 Gb/s with 2^{23-1} (V_{INPP} = 100 mV (left) & V_{INPP} = 400 mV (right), Input Signal DDJ = 30 ps)

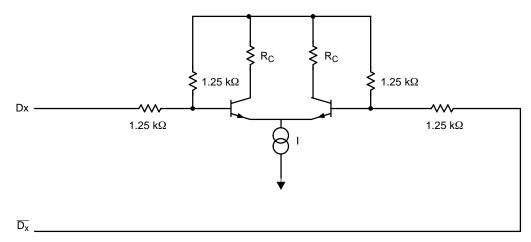


Figure 6. Input Structure

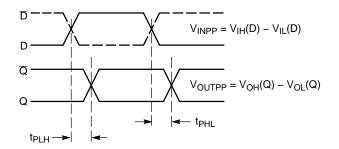


Figure 7. AC Reference Measurement

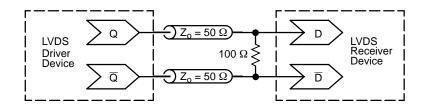


Figure 8. Typical LVDS Termination for Output Driver and Device Evaluation

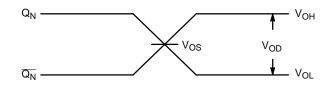


Figure 10. Differential Input Driven Single–Ended

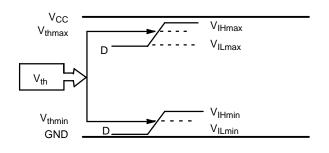


Figure 12. V_{th} Diagram

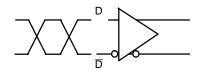
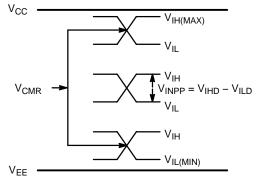
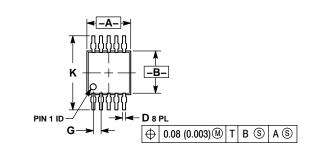
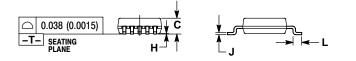
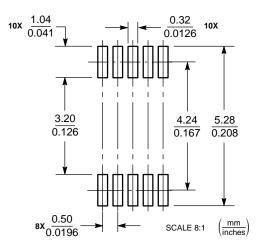



Figure 11. Differential Inputs Driven Differentially


ORDERING INFORMATION


Device	Package	Shipping [†]	
NB4N855SMR4	Micro 10	1000 / Tape & Reel	
NB4N855SMR4G	Micro 10 (Pb-Free)	1000 / Tape & Reel	

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


PACKAGE DIMENSIONS

Micro10 CASE 846B-03 ISSUE D

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

- NOTES: 1. DIMENSIONING AND TOLERANCING PER
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION 'A" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) DED SIDE
- BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION "B" DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 846B–01 OBSOLETE. NEW STANDARD 846B–02

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
В	2.90	3.10	0.114	0.122	
С	0.95	1.10	0.037	0.043	
D	0.20	0.30	0.008	0.012	
G	0.50 BSC		0.020 BSC		
Н	0.05	0.15	0.002	0.006	
J	0.10	0.21	0.004	0.008	
Κ	4.75	5.05	0.187	0.199	
L	0.40	0.70	0.016	0.028	

AnyLevel is a trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and I are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons and science particular besides of the spice to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.