FAIRCHILD

NC7SZ38 TinyLogic® UHS 2-Input NAND Gate (Open Drain Output)

General Description

Features

- Space saving SOT23 or SC70 5-lead package
- Ultra small MicroPak[™] leadless package
- Open Drain output stage for OR tied applications
- Ultra High Speed; t_{PD} 2.4 ns Typ into 50 pF at 5V V_{CC}
- High Output Sink Drive; 24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range; 1.65V to 5.5V
- Matches the performance of LCX when operated at 3.3V V_{CC}
- Power down high impedance inputs/output
- Overvoltage Tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented

Ordering Code:

NC7SZ3	88	S 2-Inpu	it NAND Gate (Open I	Drain Output)
drain output stag of TinyLogic®. CMOS technolo output drive whi over a very bro specified to oper inputs and outp Inputs tolerate v ating voltage. Th	s a single 2-Inp ge from Fairchild The device is gy to achieve u le maintaining lo bad V _{CC} operat ate over the 1.6 ut are high imp oltages up to 6V te open drain ou independent of	h wit NAND Gate w 's Ultra High Speed fabricated with a ultra high speed w we static power di ing range. The c_{5V} to 5.5V V _{CC} ra- bedance when V _{CC} independent of V tput stage will tole f V _{CC} when in	ed Series ■ Ultra small MicroPak™ leadle advanced Open Drain output stage for with high ■ Ultra High Speed; t _{PD} 2.4 ns selvice is ■ High Output Sink Drive; 24 m mge. The ■ Broad V _{CC} Operating Range Cc is 0V. ■ Matches the performance of 3.3V V _{CC} Pawae down bich image/operative ■ Davae down bich image/operative	ess package OR tied applications Typ into 50 pF at 5V V _{CC} nA at 3V V _{CC} ; 1.65V to 5.5V of LCX when operated at e inputs/output facilitate 5V to 3V
Ordering	Code:			
Order	Package	Product Code	Package Description	Supplied As
Order Number	Package Number	Top Mark		
Order	Package		Package Description 5-Lead SOT23, JEDEC MO-178, 1.6mm 5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	Supplied As 3k Units on Tape and Reel 3k Units on Tape and Reel

Pin Descriptions

Function Table

Α

L

L

н

н

*H = HIGH Impedance output state (Open Drain)

H = HIGH Logic Level

Pin Names	Description		
А, В	Inputs		
Y	Output		
NC	No Connect		

 $\mathbf{Y} = \overline{\mathbf{AB}}$

В

L

н

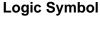
L

н

L = LOW Logic Level

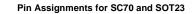
Output

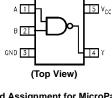
γ


*H

*H

*H


L


Inputs

Connection Diagrams

Pad Assignment for MicroPak

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

Absolute Maximum Ratings(Note 1)

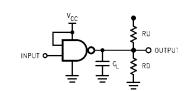
Supply Voltage (V _{CC})	-0.5V to +6V
DC Input Voltage (V _{IN})	-0.5V to +6V
DC Output Voltage (V _{OUT})	-0.5V to +6V
DC Input Diode Current (IIK)	
@V _{IN} < -0.5V	–50 mA
@ V _{IN} > 6V	+20 mA
DC Output Diode Current (I _{OK})	
@V _{OUT} < -0.5V	–50 mA
@ $V_{OUT} > 6V$, $V_{CC} = GND$	+20 mA
DC Output Current (I _{OUT})	+50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±50 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (T1);	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	
SOT23-5	200 mW
SC70-5	150 mW

Recommended Operating Conditions (Note 2)

Supply Voltage Operating (V _{CC})	1.65V to 5.5V
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to 5.5V
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t_r, t_f)	
$V_{CC} = 1.8V$, 2.5V $\pm 0.2V$	0 ns/V to 20 ns/V
$V_{CC}=3.3V\pm0.3V$	0 ns/V to 10 ns/V
$V_{CC}=5.0V\pm0.5V$	0 ns/V to 5 ns/V
Thermal Resistance (θ_{JA})	
SOT23-5	300°C/W
SC70-5	425°C/W

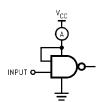
Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.


DC Electrical Characteristics

Symbol	Parameter	V _{cc}	Т	$T_A = +25^{\circ}C$		$\textbf{T}_{\textbf{A}}=-40^{\circ}\textbf{C} \text{ to }+85^{\circ}\textbf{C}$		Units	Conditions	
Symbol		(V)	Min	Тур	Max	Min	Max	Units	conditions	
V _{IH}	HIGH Level	1.65 to 1.95	0.75 V _{CC}			0.75 V _{CC}		V		
	Input Voltage	2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		v		
VIL	LOW Level	1.65 to 1.95			0.25 V _{CC}		0.25 V _{CC}	V		
	Input Voltage	2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
I _{LKG}	HIGH Level	5.5			±5		±10	μA	$V_{IN} = V_{IL}$	
	Output Leakage						ΞĪŪ	$V_{OUT} = V_{CC}$ or GN		or GND
V _{OL}	LOW Level	1.65		0.0	0.1		0.1			
	Output Voltage	1.8		0.0	0.1		0.1	I.		
		2.3		0.0	0.1		0.1	V	$V_{IN} = V_{IH}$	$I_{OL}=100\;\mu A$
		3.0		0.0	0.1		0.1	I.		
		4.5		0.0	0.1		0.1	I.		
		1.65		0.08	0.24		0.24			
		2.3		0.10	0.3		0.3	i i		I _{OL} = 8 mA
		3.0		0.15	0.4		0.4	V		I _{OL} = 16 mA
		3.0		0.22	0.55		0.55	I.		$I_{OL} = 24 \text{ mA}$
		4.5		0.22	0.55		0.55	I.		$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	5.5			±1		±10	μA	V _{IN} = 5.5V, 0	GND
I _{OFF}	Power Off Leakage Current	0.0			1	1	10	μΑ	$\rm V_{IN}$ or $\rm V_{OUT}$	= 5.5V
Icc	Quiescent Supply Current	5.5			2.0		20	μΑ	V _{IN} = 5.5V, 0	GND

Symbol	Parameter	V _{cc}	$T_A = +25^{\circ}C$			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	Figure
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PZL}	Propagation Delay	1.65	1.5	6.5	12.7	1.5	13.2			
		1.8	1.5	5.4	10.5	1.5	11.0		$C_L = 50 \text{ pF}$	
		2.5 ± 0.2	0.8	3.5	7.0	0.8	7.5	ns	RU = 500Ω	Figures 1, 3
		3.3 ± 0.3	0.8	2.8	5.0	0.8	5.2		$RD = 500\Omega$	1, 0
		5.0 ± 0.5	0.5	2.2	4.3	0.5	4.5		$V_I = 2 \times V_{CC}$	
t _{PLZ}	Propagation Delay	1.65	1.5	5.5	12.7	1.5	13.2			
		1.8	1.5	4.6	10.5	1.5	11.0		$C_L = 50 \text{ pF}$	_
		2.5 ± 0.2	0.8	3.0	7.0	0.8	7.5	ns	$RU = 500\Omega$	Figures 1, 3
		3.3 ± 0.3	0.8	2.1	5.0	0.8	5.2		$RD = 500\Omega$	1, 0
		5.0 ± 0.5	0.5	1.3	4.3	0.5	4.5		$V_I = 2 \times V_{CC}$	
C _{IN}	Input Capacitance	0		4				pF		
C _{OUT}	Output Capacitance	0		5				PΕ		
C _{PD}	Power Dissipation	3.3		5.1				~ F	(Nata 2)	Figure 2
	Capacitance	5.0		7.3				pF	(Note 3)	Figure 2

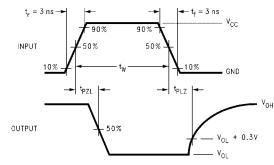
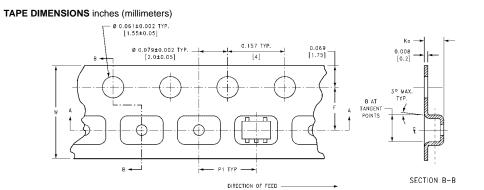

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC} static).

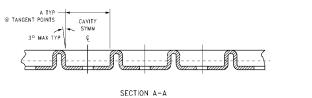
AC Loading and Waveforms

 C_{L} includes load and stray capacitance Input PRR = 1.0 MHz; t_{w} = 500 ns

FIGURE 1. AC Test Circuit

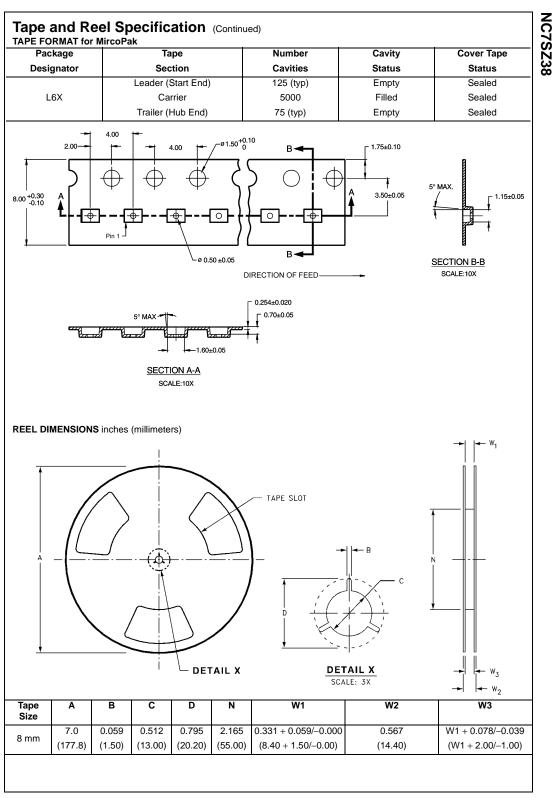
Input = AC Waveform; $t_r = t_f = 1.8~\text{ns}$ PRR = 10 MHz; Duty Cycle = 50% $FIGURE~2.~I_{CCD}~Test~Circuit$

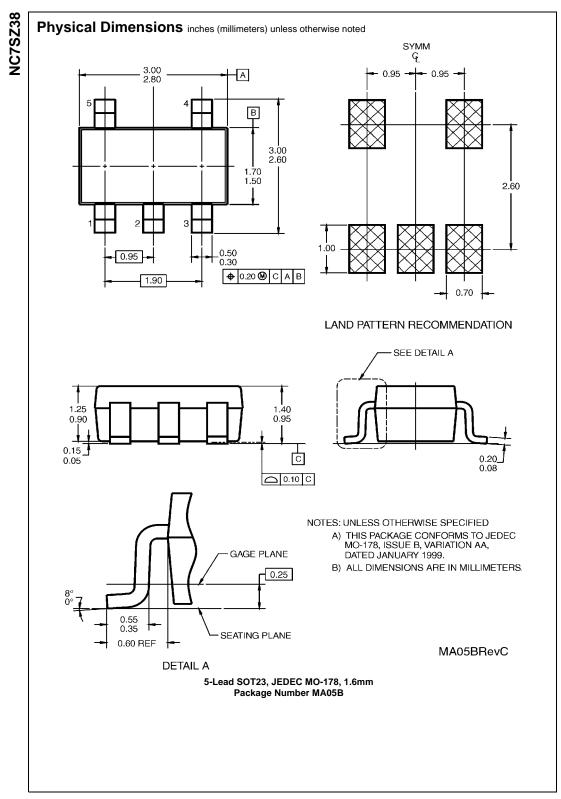



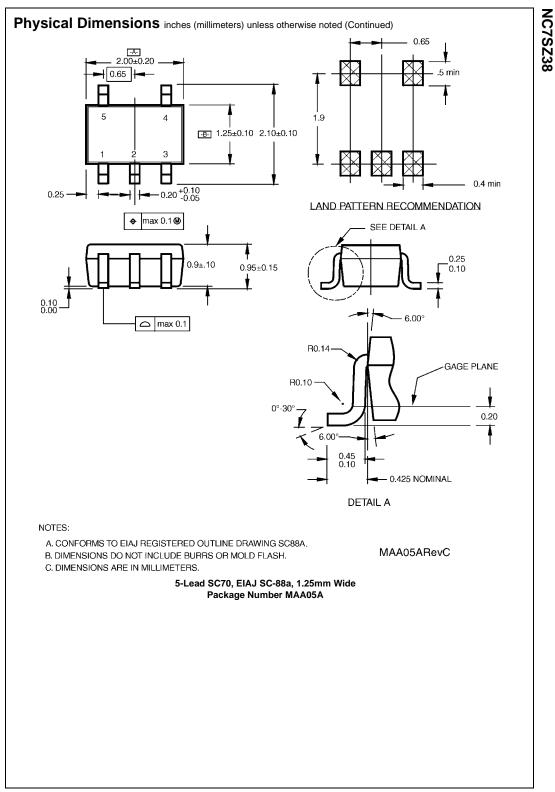

FIGURE 3. AC Waveforms

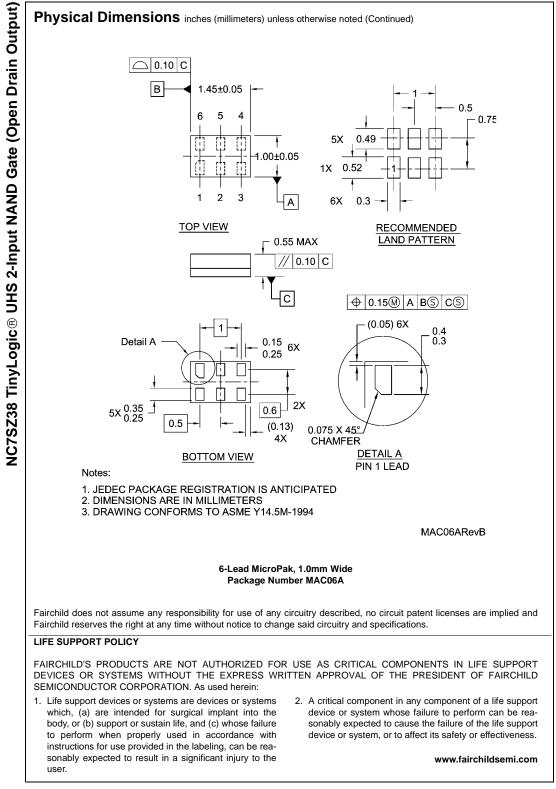
Tape and Reel Specification TAPE FORMAT for SC70 and SOT23

Package	Таре	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
M5X, P5X	Carrier	3000	Filled	Sealed
- , -	Trailer (Hub End)	75 (typ)	Empty	Sealed






[30]


BEND RADIUS NOT TO SCALE

Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-5	8 mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004
		(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)
SOT23-5	8 mm	0.130	0.130	0.138 ± 0.002	0.055 ± 0.004	0.157	0.315 ± 0.012
		(3.3)	(3.3)	(3.5 ± 0.05)	(1.4 ± 0.11)	(4)	(8 ± 0.3)

