

July 2001

Revised April 2003

AIRCHI

SEMICONDUCTOF

NC7NZ34 TinyLogic® UHS Triple Buffer

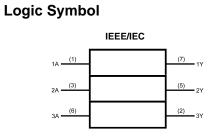
General Description

The NC7NZ34 is a triple buffer from Fairchild's Ultra High Speed Series of TinyLogic® in the space saving US8 package. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V $V_{\mbox{CC}}$ range. The inputs and outputs are high impedance when V_{CC} is 0V. Inputs tolerate voltages up to 7V independent of V_{CC} operating voltage.

Features

- Space saving US8 surface mount package
- MicroPak[™] leadless package
- Ultra High Speed: t_{PD} 2.4 ns Typ into 50 pF at 5V V_{CC}
- High Output Drive: ±24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range: 1.65V to 5.5V
- Power down high impedance inputs/outputs
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented

Ordering Code:

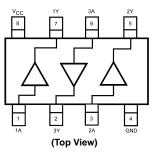

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7NZ34K8X	MAB08A	7NZ34	8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide	3k Units on Tape and Reel
NC7NZ34L8X (Preliminary)	MAC08A	P9	8-Lead MicroPak, 1.6 mm Wide	5k Units on Tape and Reel

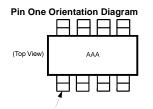
NC7NZ34 TinyLogic® UHS Triple Buffer

dzsc.con

NC7NZ34

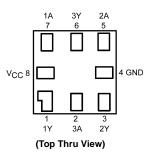
Pin Descriptions


Pin Names	Description
A ₁ , A ₂ , A ₃	Data Inputs
Y ₁ , Y ₂ , Y ₃	Output


Function Table

Y =	- A
Input	Output
Α	Y
L	L
Н	Н

H = HIGH Logic Level L = LOW Logic Level



Pin One AAA represents Product Code Top Mark - see ordering code

Note: Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).

Pad Assignments for MicroPak

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Voltage (V _{IN})	-0.5V to +7.0V
DC Output Voltage (V _{OUT})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
V _{IN} < 0V	–50 mA
DC Output Diode Current (I _{OK})	
V _{OUT} < 0V	–50 mA
DC Output Source/Sink Current (I _{OUT})	±50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±100 mA
Storage Temperature (T _{STG})	–65°C to +150°C
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	250 mW

Recommended Operating Conditions (Note 2)

Supply Voltage	
Operating (V _{CC})	1.65V to 5.5V
Data Retention	1.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to V _{CC}
Input Rise and Fall Time (t_r, t_f)	
$V_{CC}=1.8V,2.5V\pm0.2V$	0 to 20 ns/V
$V_{CC}=3.3V\pm0.3V$	0 to 10 ns/V
$V_{CC}=5.5V\pm0.5V$	0 to 5 ns/V
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Thermal Resistance (θ_{JA})	250°C/W
Note 1: Absolute maximum ratings are DC values b	eyond which the device

may be damaged or have its useful life impaired. The datasheet specifictions should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

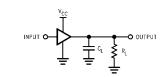
DC Electrical Characteristics

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$			$T_A = -40^{\circ}$	C to +85°C	Units	Conditions		
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Units	Co	naitions
V _{IH}	HIGH Level Control	1.8 ± 0.15	0.75 V _{CC}			0.75 V _{CC}		v		
	Input Voltage	2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		v		
VIL	LOW Level Control	1.8 ± 0.15			0.25 V _{CC}		0.25 V _{CC}	V		
	Input Voltage	2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
V _{OH}	HIGH Level Control	1.65	1.55	1.65		1.55				
	Output Voltage	2.3	2.2	2.3		2.2				I _{OH} = -100 μA
		3.0	2.9	3.0		2.9				$I_{OH} = -100 \mu A$
		4.5	4.4	4.5		4.4			V _{IN} = V _{IH} I _{OH} = -	
		1.65	1.29	1.52		1.29		V		$I_{OH} = -4 \text{ mA}$
		2.3	1.9	2.14		1.9				$I_{OH} = -8 \text{ mA}$
		3.0	2.4	2.75		2.4				$I_{OH} = -16 \text{ mA}$
		3.0	2.3	2.62		2.3				$I_{OH} = -24 \text{ mA}$
		4.5	3.8	4.13		3.8				$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level Control	1.65		0.0	0.1		0.1			
	Output Voltage	2.3		0.0	0.1		0.1			I _{OL} = 100 μA
		3.0		0.0	0.1		0.1			$I_{OL} = 100 \mu A$
		4.5		0.0	0.1		0.1			
		1.65		0.08	0.24		0.24	V	$V_{IN}=V_{IL}$	$I_{OL} = 4 \text{ mA}$
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$
		3.0		0.16	0.4		0.4			$I_{OL} = 16 \text{ mA}$
		3.0		0.24	0.55		0.55			$I_{OL} = 24 \text{ mA}$
		4.5		0.25	0.55		0.55			$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±0.1		±1.0	μΑ	$0 \leq V_{IN} \leq 5$.5V
I _{OFF}	Power Off Leakage Current	0.0			1.0		10	μΑ	VIN or VOUT	_T = 5.5V
Icc	Quiescent Supply Current	1.65 to 5.5			1.0		10	μA	V _{IN} = 5.5V,	GND

4
ŝ
N
Z
~
C
z

AC Electrical Characteristics

Symbol	Parameter	V _{CC}	T _A = +25°C			T _A = -40°	C to +85°C	Units	Conditions	Figure
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PLH}	Propagation Delay	1.8 ± 0.15	1.8	4.6	8.0	1.8	8.8			
t _{PHL}		2.5 ± 0.2	1.0	3.0	5.2	1.0	5.8	20	$C_{L} = 15 \text{ pF},$	Figures
		$\textbf{3.3}\pm\textbf{0.3}$	0.8	2.3	3.6	0.8	4.0	ns	$R_L = 1 M\Omega$	1, 3
		5.0 ± 0.5	0.5	1.8	2.9	0.5	3.2			
t _{PLH}	Propagation Delay	$\textbf{3.3}\pm\textbf{0.3}$	1.2	3.0	4.6	1.2	5.1	ns	$C_{L} = 50 \text{ pF},$	Figures 1, 3
t _{PHL}		5.0 ± 0.5	0.8	2.4	3.8	0.8	4.2	115	$R_L = 500\Omega$	
CIN	Input Capacitance	0		2.5				pF		
C _{PD}	Power Dissipation	3.3		9				pF	(Note 3)	Figure 2
	Capacitance	5.0		11				ΡF	(11010-3)	r igute z


Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression:

 $\mathsf{I}_{\text{CCD}} = (\mathsf{C}_{\text{PD}})(\mathsf{V}_{\text{CC}})(\mathsf{f}_{\text{IN}}) + (\mathsf{I}_{\text{CC}}\text{static}).$

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{cc}	$T_A = 25^{\circ}C$	Unit
Oymbol	ratameter	Conditions	(V)	Typical	Onit
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 pF, V_{IH} = 5.0V, V_{IL} = 0V$	5.0	0.8	V
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 pF, V_{IH} = 5.0V, V_{IL} = 0V$	5.0	-0.8	V

AC Loading and Waveforms

 C_L includes load and stray capacitance Input PRR = 1.0 MHz; t_W = 500 ns $\mbox{FIGURE 1. AC Test Circuit}$

$$\label{eq:prod} \begin{split} & \text{Input} = \text{AC} \mbox{ Waveform; } t_r = t_f = 1.8 \mbox{ ns;} \\ & \text{PRR} = 10 \mbox{ MHz; } \text{Duty Cycle} = 50\% \\ & \mbox{ FIGURE 2. I_{CCD} Test Circuit } \end{split}$$

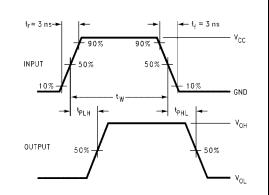
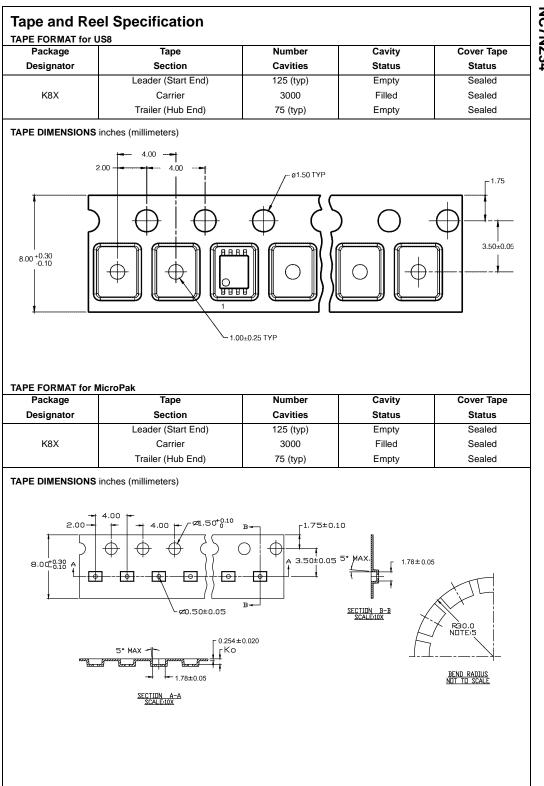
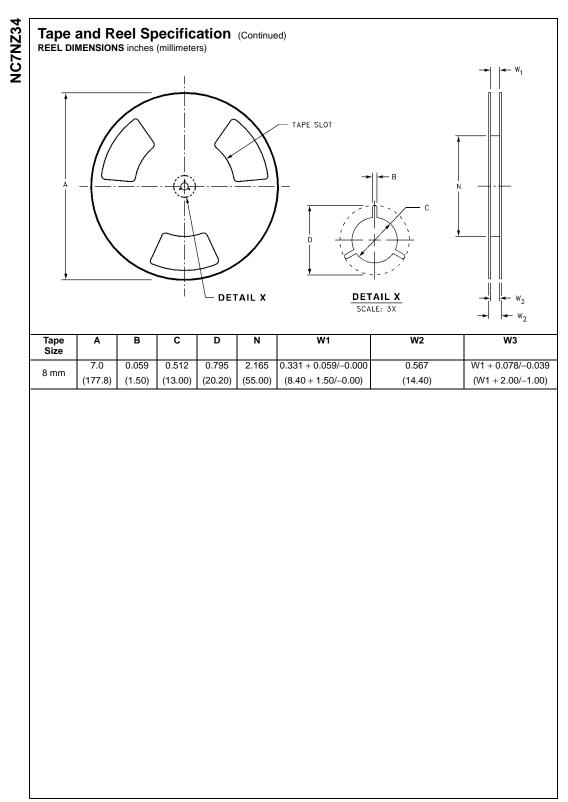
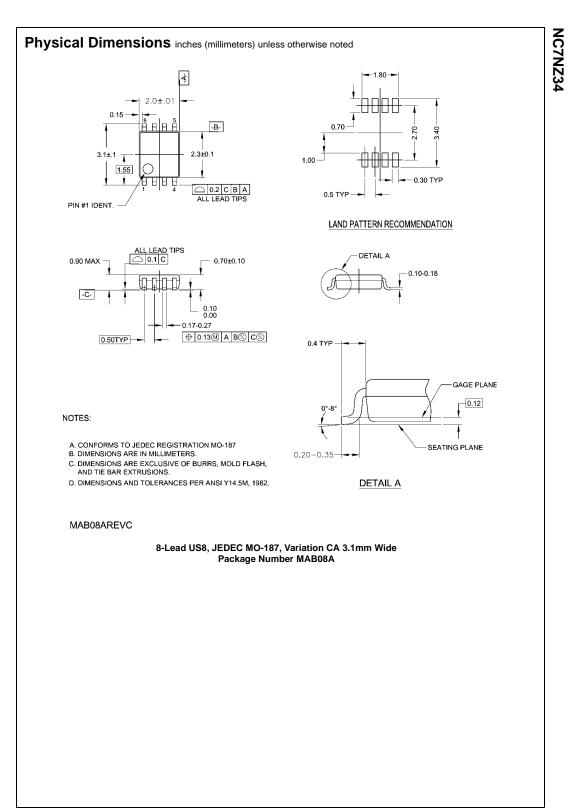
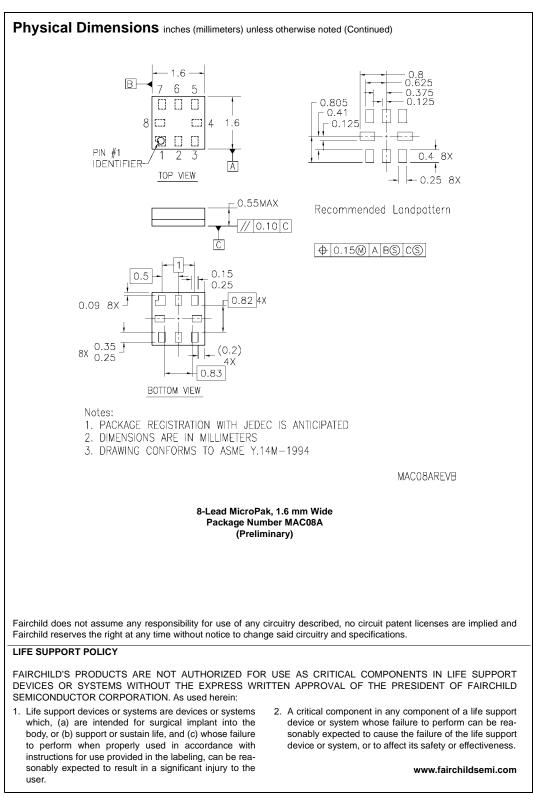






FIGURE 3. AC Waveforms

