

AIRCHILD

SEMICONDUCTOR®

October 2001 Revised March 2003

NC7SP57 • NC7SP58 TinyLogic® ULP Universal Configurable 2-Input Logic Gates

General Description

The NC7SP57 and the NC7SP58 are Universal Configurable 2-Input Logic Gates from Fairchild's Ultra Low Power (ULP) Series of TinyLogic®. Ideal for applications where battery life is critical, this product is designed for ultra low power consumption within the V_{CC} operating range of 0.9V to 3.6V. Each device is capable of being configured for 1 of 5 unique 2-input logic functions. Any possible 2-input combinatorial logic function can be implemented as shown in the Function Selection Table. Device functionality is selected by how the device is wired at the board level. Figure 1 through Figure 10 illustrate how to connect the NC7SP57 and NC7SP58 respectively for the desired logic function. All inputs have been implemented with hysteresis.

The internal circuit is composed of a minimum of inverter stages including the output buffer, to enable ultra low dynamic power.

The NC7SP57 and NC7SP58, for lower drive requirements, are uniquely designed for optimized power and speed, and are fabricated with an advanced CMOS technology to achieve best in class operation while maintaining extremely low CMOS power dissipation.

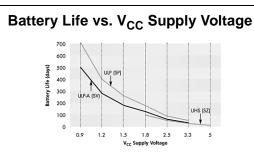
WW.DZSC

Features

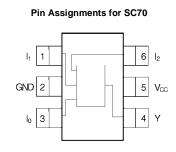
- 0.9V to 3.6V V_{CC} supply operation
- 3.6V overvoltage tolerant I/O's at V_{CC} from 0.9V to 3.6V
- t_{PD}

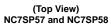
5 ns typ for 3.0V to 3.6V V_{CC} 6 ns typ for 2.3V to 2.7V V_{CC} 8 ns typ for 1.65V to 1.95V V_{CC} 10 ns typ for 1.40V to 1.60V V_{CC} 14 ns typ for 1.10V to 1.30V V_{CC} 40 ns typ for 0.90V V_{CC}

- Power-Off high impedance inputs and outputs
- Static Drive (I_{OH}/I_{OL})
 - ± 2.6 mA @ 3.00V $\rm V_{CC}$
 - ± 2.1 mA @ 2.30V $\rm V_{CC}$
 - ± 1.5 mA @ 1.65V $\rm V_{CC}$
 - ± 1.0 mA @ 1.40V $\rm V_{CC}$
 - ±0.5 mA @ 1.10V V_{CC}
- ±20 μA @ 0.9V V_{CC}
- Uses patented Quiet Series[™] noise/EMI reduction circuitry
- Ultra small MicroPak™ leadfree package
- Ultra low dynamic power

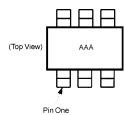

Ordering Code:

Order Number	Package	Product Code	Package Description	Supplied As
Order Number	Number	Top Mark	Package Description	Supplied AS
NC7SP57P6X	MAA06A	P57	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel
NC7SP57L6X	MAC06A	K9	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel
NC7SP58P6X	MAA06A	P58	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel
NC7SP58L6X	MAC06A	L3	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

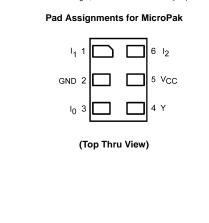

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. Quiet Series™ and MicroPak™ are trademarks of Fairchild Semiconductor Corporation.



IC7SP57 • NC7SP58 TinyLogic® ULP Universal Configurable 2-Input Logic Gates



Connection Diagrams



Pin One Orientation Diagram

AAA = Product Code Top Mark - see ordering code

Note: Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).

TinyLogic ULP and ULP-A with up to 50% less power consumption can extend your battery life significantly. Battery Life = (V_{battery} *I_{battery} *.9)/(P_{device})/24hrs/day

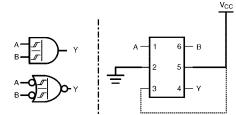
Where, $P_{device} = (I_{CC} + V_{CC}) + (C_{PD} + C_L)^* V_{CC}^2 * f$ Assumes ideal 3.6V Lithium Ion battery with current rating of 900mAH and derated 90% and device frequency at 10MHz, with C_L = 15 pF load

Pin Descriptions

Pin Name	Description
I ₀ , I ₁ , I ₂	Data Input
Y	Output

Function Table

Input			NC7SP57	NC7SP58		
l ₂	I ₁	I ₀	$Y = (\overline{I}_0) \bullet (\overline{I}_2) + (I_1) \bullet (I_2)$	$Y = (I_0) \bullet (\overline{I}_2) + (\overline{I}_1) \bullet (I_2)$		
L	L	L	Н	L		
L	L	Н	L	Н		
L	Н	L	Н	L		
L	Н	Н	L	Н		
Н	L	L	L	Н		
Н	L	Н	L	Н		
н	Н	L	Н	L		
н	Н	Н	Н	L		
H = HIG	H Logic	Level	L = LOW Logic Leve			


www.fairchildsemi.com

2 Innut Logic Function	Device	Connection
2-Input Logic Function	Selection	Configuration
2-Input AND	NC7SP57	Figure 1
2-Input AND with inverted input	NC7SP58	Figures 7, 8
2-Input AND with both inputs inverted	NC7SP57	Figure 4
2-Input NAND	NC7SP58	Figure 6
2-Input NAND with inverted input	NC7SP57	Figures 2, 3
2-Input NAND with both inputs inverted	NC7SP58	Figure 9
2-Input OR	NC7SP58	Figure 9
2-Input OR with inverted input	NC7SP57	Figures 2, 3
2-Input OR with both inputs inverted	NC7SP58	Figure 6
2-Input NOR	NC7SP57	Figure 4
2-Input NOR with inverted input	NC7SP58	Figures 7, 8
2-Input NOR with both inputs inverted	NC7SP57	Figure 1
2-Input XOR	NC7SP58	Figure 10

Function Selection Table

Logic Configurations NC7SP57

Figure 1 through Figure 5 show the logical functions that can be implemented using the NC7SP57. The diagrams show the DeMorgan's equivalent logic duals for a given 2-input function. Next to the logical implementation is the board level physical implementation of how the pins of the function should be connected.

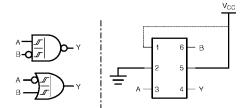


FIGURE 3. 2-Input NAND with Inverted B Input

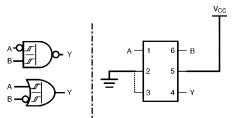


FIGURE 2. 2-Input NAND with Inverted A Input

FIGURE 4. 2-Input NOR Gate

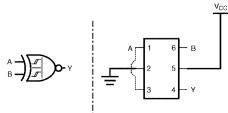
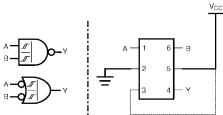



FIGURE 5. 2-Input XNOR Gate

NC7SP57 • NC7SP58

Logic Configurations NC7SP58

Figure 6 through Figure 10 show the logical functions that can be implemented using the NC7SP58. The diagrams show the DeMorgan's equivalent logic duals for a given 2-input function. Next to the logical implementation is the board level physical implementation of how the pins of the function should be connected.

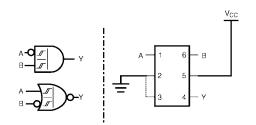
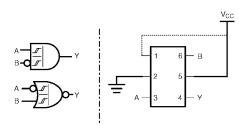
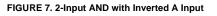




FIGURE 6. 2-Input NAND Gate

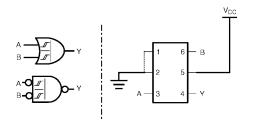


FIGURE 8. 2-Input AND with Inverted B Input

FIGURE 9. 2-Input OR Gate

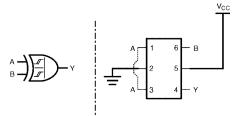


FIGURE 10. 2-Input XOR Gate

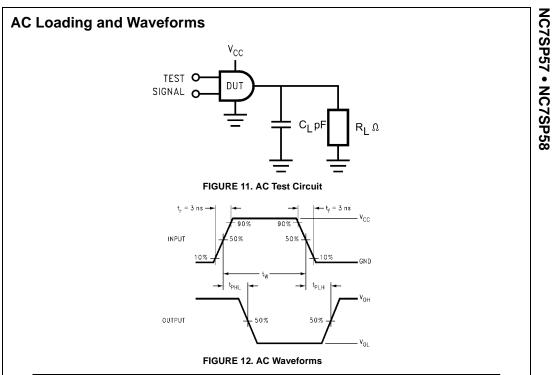
Absolute Maximum Ratings(Note 1)

Recommende	d Operating
Conditions (No	ote 3)

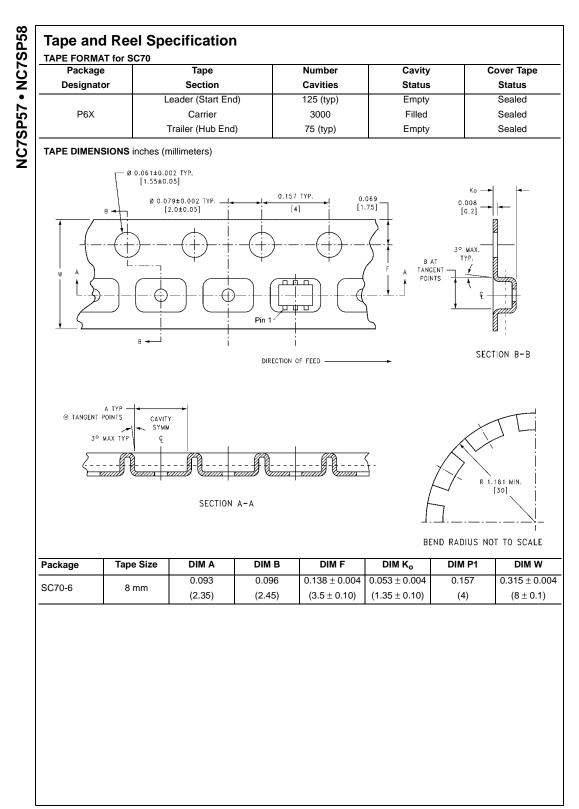
	Supply Voltage (V _{CC})	-0.5V to +4.6V	C
	DC Input Voltage (V _{IN})	-0.5V to +4.6V	
	DC Output Voltage (V _{OUT})		
	HIGH or LOW State (Note 2)	–0.5V to V_{CC} +0.5V	,
	$V_{CC} = 0V$	-0.5V to 4.6V	
	DC Input Diode Current (I _{IK}) $V_{IN} < 0V$	±50 mA	
	DC Output Diode Current (I _{OK})		
	V _{OUT} < 0V	–50 mA	
	V _{OUT} > V _{CC}	+50 mA	
	DC Output Source/Sink Current (I_{OH}/I_{OL})	± 50 mA	
	DC V_{CC} or Ground Current per		
	Supply Pin (I _{CC} or Ground)	± 50 mA	
	Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	
ĺ			

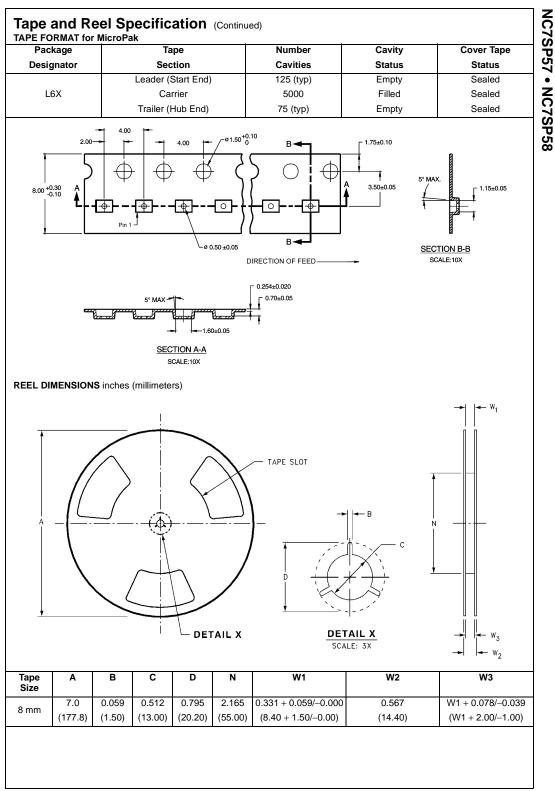
		_
Recommended Operating Conditions (Note 3)	I	NC7SP57 • NC7SP58
Supply Voltage	0.9V to 3.6V	S
Input Voltage (V _{IN})	0V to 3.6V	~
Output Voltage (V _{OUT})		z
HIGH or LOW State	0V to V _{CC}	2
$V_{CC} = 0V$	0V to 3.6V	S
Output Current in I _{OH} /I _{OL}		P5
$V_{CC} = 3.0V$ to 3.6V	±2.6 mA	õ
$V_{CC} = 2.3V$ to 2.7V	\pm 2.1 mA	
V _{CC} = 1.65V to 1.95V	\pm 1.5 mA	
$V_{CC} = 1.40V$ to 1.60V	\pm 1 mA	
V _{CC} = 1.10V to 1.30V	±0.5 mA	
$V_{CC} = 0.9V$	±20 μA	
Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$	
Minimum Input Edge Rate ($\Delta t/\Delta V$)		
V_{IN} = 0.8V to 2.0V, V_{CC} = 3.0V	10 ns/V	
		1

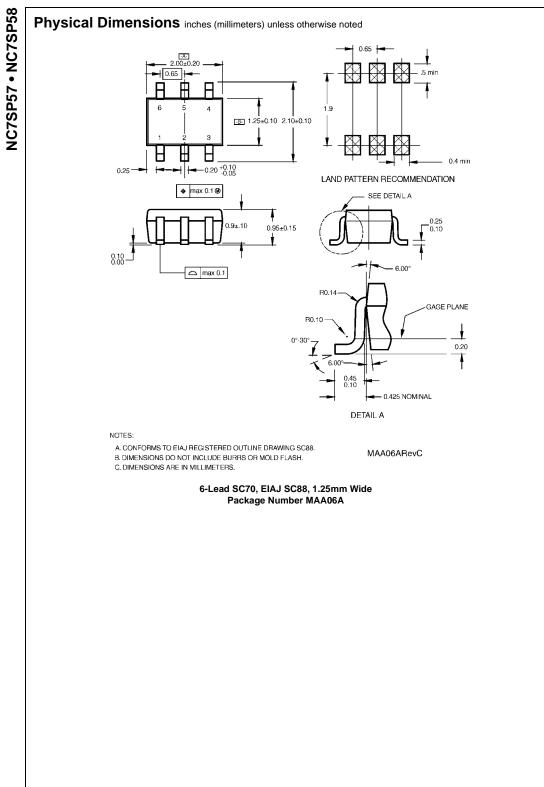
Note 1: Absolute Maximum Ratings: are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

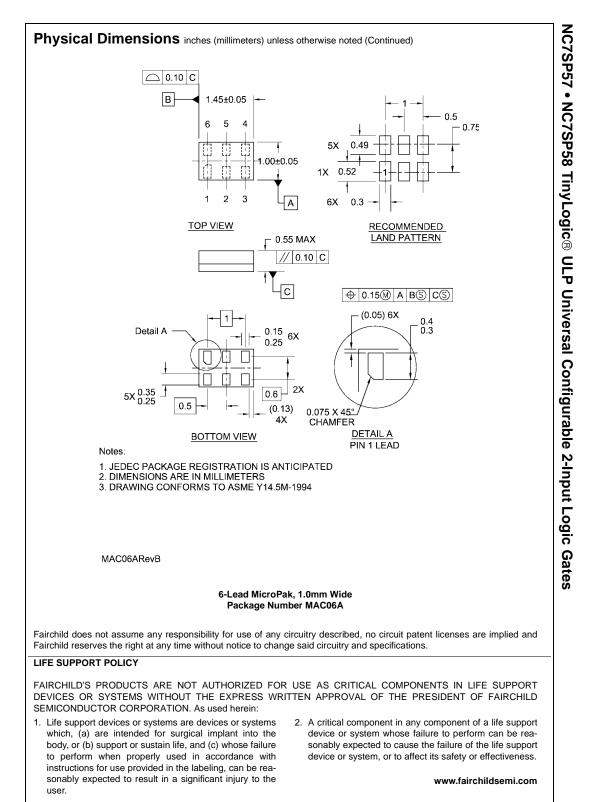

Note 2: I_{O} Absolute Maximum Rating must be observed.

Note 3: Unused inputs must be held HIGH or LOW. They may not float.


DC Electrical Characteristics


Symbol	Parameter	V _{cc}	T _A = -	+25°C	T _A = -40°	C to +85°C	Units	Conditions
Symbol	Falameter	(V)	Min	Max	Min	Max	Onits	Conditions
VP	Positive Threshold Voltage	0.90	0.3	0.6	0.3	0.6		
		1.10	0.4	1.0	0.4	1.0		
		1.40	0.5	1.2	0.5	1.2	v	
		1.65	0.7	1.5	0.7	1.5	v	
		2.30	1.0	1.9	1.0	1.9		
		3.0	1.5	2.6	1.5	2.6		
V _N	Negative Threshold Voltage	0.90	0.10	0.6	0.10	0.6		
		1.10	0.15	0.7	0.15	0.7		
		1.40	0.20	0.8	0.20	0.8	v	
		1.65	0.25	0.9	0.25	0.9	v	
		2.30	0.4	1.15	0.4	1.15		
		3.0	0.6	1.5	0.6	1.5		
V _H	Hysteresis Voltage	0.90	0.07	0.5	0.07	0.5		
		1.10	0.08	0.6	0.08	0.6		
		1.40	0.09	0.8	0.09	0.8	v	
		1.65	0.10	1.0	0.10	1.0	v	
		2.30	0.25	1.1	0.25	1.1		
		3.0	0.60	1.8	0.60	1.8		


			V _{cc}	/ _{CC} T _A =		-25°C	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		5°C			
Symbol	Parameter		(V)		Min	Max	Min	Ма		Units	Condi	tions
V _{OH}	HIGH Level		0.90		V _{CC} - 0.1		V _{CC} - 0.1					
	Output Voltage		$1.10 \leq V_{CC}$	≤ 1.30	V _{CC} - 0.1		V _{CC} - 0.1					
			$1.40 \leq V_{CC}$	≤ 1.60	V _{CC} - 0.1		$V_{CC} - 0.1$					
			$1.65 \leq V_{CC}$	≤ 1.95	V _{CC} - 0.1		$V_{CC} - 0.1$				I _{OH} = -20 μA	
			$2.30 \leq V_{CC}$	≤ 2.70	$V_{CC} - 0.1$		$V_{CC} - 0.1$					
			$3.00 \leq V_{CC}$	≤ 3.60	$V_{CC} - 0.1$		$V_{CC} - 0.1$			V		
			$1.10 \leq V_{CC}$	≤ 1.30	$0.75 \times V_{CC}$		0.70 x V _{CC}				$I_{OH} = -0.5 \text{ m}.$	A
			$1.40 \leq V_{CC}$		1.07		0.99				$I_{OH} = -1 \text{ mA}$	
			$1.65 \le V_{CC}$		1.24		1.22				I _{OH} = -1.5 m.	
			$2.30 \le V_{CC}$		1.95		1.87				$I_{OH} = -2.1 \text{ m}.$	
			3.00 ≤ V _{CC}	≤ 3.60	2.61		2.55				$I_{OH} = -2.6 \text{ m}.$	A
V _{OL}	LOW Level		0.90			0.1		0.1				
	Output Voltage		$1.10 \le V_{CC}$			0.1		0.1				
			$1.40 \le V_{CC}$			0.1		0.1			$I_{OL}{=}20~\mu A$	
			$1.65 \le V_{CC}$ $2.30 \le V_{CC}$			0.1 0.1		0. ⁻ 0				
			$3.00 \le V_{CC}$			0.1		0.		v		
			1.10 ≤ V _{CC}			0.30 x V _{CC}		0.30 x		•	I _{OL} = 0.5 mA	
			1.40 ≤ V _{CC}			0.31	,	0.3			$I_{OL} = 1 \text{ mA}$	
			1.65 ≤ V _{CC}			0.31		0.3			$I_{OL} = 1.5 \text{ mA}$	
			2.30 ≤ V _{CC}			0.31		0.3			$I_{OL} = 2.1 \text{ mA}$	
			3.00 ≤ V _{CC}			0.31		0.3	3		I _{OL} = 2.6 mA	
I _{IN}	Input Leakage Curre	nt	0.90 to 3	.60		±0.1		±0.	9	μA	$0 \le V_I \le 3.6V$	
I _{OFF}	Power Off Leakage 0	Current	0			1		5		μΑ	$0 \le (V_I, V_O) \le$	3.6V
I _{CC}	Quiescent Supply Cu	urrent	0.90 to 3	.60		0.5		5.0)	μA	$V_I = V_{CC}$ or C	SND
Δ (. F	Internet in the second s	hara	ctorict	ire								
	Parameter	hara	cterist		T _A = +25°C		T _A = −40°C t		Units		Conditions	
Symbol	Parameter	hara	V _{CC} (V)	ics _{Min}	Тур	C Max	T _A = −40°C t Min	o +85°C Max	Units	5	Conditions	
Symbol			V _{CC} (V) 0.90	Min	Typ 40	Max	Min	Max	Units	5	Conditions	
Symbol	Parameter	1.10 ≤	V _{CC} (V) 0.90 V _{CC} ≤ 1.30	Min 5.5	Typ 40 14	Max 28.0	Min 5.0	Max 51.0	Units			Num
Symbol	Parameter	1.10 ≤ 1.40 ≤	V _{CC} (V) 0.90 $V_{CC} \le 1.30$ $V_{CC} \le 1.60$	Min 5.5 4.5	Typ 40 14 10	Max 28.0 17.0	Min 5.0 4.0	Max 51.0 21.0	Units	C _L =	- 10 pF	Figur
Symbol	Parameter	1.10 ≤ 1.40 ≤ 1.65 ≤	$V_{CC} (V) \\ 0.90 \\ V_{CC} \le 1.30 \\ V_{CC} \le 1.60 \\ V_{CC} \le 1.95 \\ \end{cases}$	Min 5.5 4.5 3.5	Typ 40 14 10 8	Max 28.0 17.0 14.0	Min 5.0 4.0 3.0	Max 51.0 21.0 17.0		C _L =		Figur
Symbol	Parameter	1.10 ≤ 1.40 ≤ 1.65 ≤ 2.30 ≤	$\begin{tabular}{ c c c c } \hline V_{CC} & \\ \hline (V) & \\ \hline 0.90 & \\ V_{CC} \leq 1.30 & \\ V_{CC} \leq 1.60 & \\ V_{CC} \leq 1.95 & \\ V_{CC} \leq 2.70 & \\ \hline \end{tabular}$	Min 5.5 4.5 3.5 2.5	Typ 40 14 10 8 6	Max 28.0 17.0 14.0 10.0	Min 5.0 4.0 3.0 2.0	Max 51.0 21.0 17.0 13.0		C _L =	- 10 pF	Figur
Symbol t _{PHL} , t _{PLH}	Parameter Propagation Delay	1.10 ≤ 1.40 ≤ 1.65 ≤ 2.30 ≤	$\begin{tabular}{ c c c c } \hline V_{CC} & & \\ \hline (V) & & \\ \hline 0.90 & & \\ V_{CC} \leq 1.30 & \\ V_{CC} \leq 1.60 & \\ V_{CC} \leq 1.95 & \\ V_{CC} \leq 2.70 & \\ V_{CC} \leq 3.60 & \\ \hline \end{tabular}$	Min 5.5 4.5 3.5	Typ 40 14 10 8 6	Max 28.0 17.0 14.0	Min 5.0 4.0 3.0	Max 51.0 21.0 17.0		C _L =	- 10 pF	Figur
Symbol t _{PHL} , t _{PLH}	Parameter	1.10 ≤ 1.40 ≤ 1.65 ≤ 2.30 ≤ 3.00 ≤	V _{CC} (V) 0.90 $V_{CC} \le 1.30$ $V_{CC} \le 1.60$ $V_{CC} \le 1.95$ $V_{CC} \le 2.70$ $V_{CC} \le 3.60$ 0.90 0.90	Min 5.5 4.5 3.5 2.5 1.5	Typ 40 14 10 8 6 5 5 41	Max 28.0 17.0 14.0 10.0 8.0	Min 5.0 4.0 3.0 2.0 1.0	Max 51.0 21.0 17.0 13.0 12.0		C _L =	- 10 pF	Figur
Symbol t _{PHL} , t _{PLH}	Parameter Propagation Delay	1.10 ≤ 1.40 ≤ 1.65 ≤ 2.30 ≤ 3.00 ≤		Min 5.5 4.5 3.5 2.5	Typ 40 14 10 8 6 5 5 41 15	Max 28.0 17.0 14.0 10.0	Min 5.0 4.0 3.0 2.0	Max 51.0 21.0 17.0 13.0	ns	C _L = R _L =	: 10 pF : 1 ΜΩ	Figur 11, 1
Symbol t _{PHL} , t _{PLH}	Parameter Propagation Delay	1.10 ≤ 1.40 ≤ 2.30 ≤ 3.00 ≤ 1.10 ≤ 1.40 ≤	$V_{CC} \\ (V) \\ 0.90 \\ V_{CC} \le 1.30 \\ V_{CC} \le 1.60 \\ V_{CC} \le 1.95 \\ V_{CC} \le 2.70 \\ V_{CC} \le 3.60 \\ 0.90 \\ V_{CC} \le 1.30 \\ V_{CC} \le 1.60 \\ 0.90 \\ V_{CC} \le 1.60 \\ 0.90$	Min 5.5 4.5 3.5 2.5 1.5 6.5	Typ 40 14 10 8 6 5 5 41 15 10	Max 28.0 17.0 14.0 10.0 8.0 29.0	Min 5.0 4.0 3.0 2.0 1.0 6.0	Max 51.0 21.0 17.0 13.0 12.0 52.0		C _L = R _L = C _L =	- 10 pF	Figur 11, 1
Symbol t _{PHL} , t _{PLH}	Parameter Propagation Delay	1.10 ≤ 1.40 ≤ 2.30 ≤ 3.00 ≤ 1.10 ≤ 1.40 ≤ 1.65 ≤		Min 5.5 4.5 3.5 2.5 1.5 6.5 5.0	Typ 40 14 10 8 6 5 41 15 10 8	Max 28.0 17.0 14.0 10.0 8.0 29.0 18.0	Min 5.0 4.0 3.0 2.0 1.0 6.0 4.5	Max 51.0 21.0 17.0 13.0 12.0 52.0 22.0	ns	C _L = R _L = C _L =	: 10 pF : 1 ΜΩ : 15 pF	Figur 11, 1
Symbol t _{PHL} , t _{PLH}	Parameter Propagation Delay	1.10 ≤ 1.40 ≤ 2.30 ≤ 3.00 ≤ 1.10 ≤ 1.40 ≤ 2.30 ≤	$\begin{array}{c} \textbf{V}_{CC} \\ \textbf{(V)} \\ 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.60 \\ \forall_{CC} \leq 1.95 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 3.60 \\ 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.60 \\ \forall_{CC} \leq 1.95 \end{array}$	Min 5.5 4.5 3.5 2.5 1.5 6.5 5.0 4.0	Typ 40 14 10 8 6 5 41 15 10 8 6	Max 28.0 17.0 14.0 10.0 8.0 29.0 18.0 15.0	Min 5.0 4.0 3.0 2.0 1.0 6.0 4.5 3.5	Max 51.0 21.0 17.0 13.0 22.0 18.0	ns	C _L = R _L = C _L =	: 10 pF : 1 ΜΩ : 15 pF	Figur 11, 1
Symbol t _{РНL} , t _{РLH} t _{РLH} , t _{РLH}	Parameter Propagation Delay	1.10 ≤ 1.40 ≤ 2.30 ≤ 3.00 ≤ 1.10 ≤ 1.40 ≤ 2.30 ≤	$\begin{array}{c} \textbf{V_{CC}} \\ \textbf{(V)} \\ 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.60 \\ \forall_{CC} \leq 1.95 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 3.60 \\ 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.60 \\ \forall_{CC} \leq 1.95 \\ \forall_{CC} \leq 2.70 \end{array}$	Min 5.5 4.5 3.5 2.5 1.5 6.5 5.0 4.0 3.0	Typ 40 14 10 8 6 5 41 15 10 8 6	Max 28.0 17.0 14.0 0.0 8.0 29.0 18.0 15.0 11.0	Min 5.0 4.0 3.0 2.0 1.0 6.0 4.5 3.5 2.5	Max 51.0 21.0 17.0 13.0 12.0 52.0 22.0 18.0 14.0	ns	C _L = R _L = C _L =	: 10 pF : 1 ΜΩ : 15 pF	Figur 11, 1
Symbol t _{РНL} , t _{РLH} t _{РLL} , t _{РLH}	Parameter Propagation Delay Propagation Delay	1.10 ≤ 1.65 ≤ 2.30 ≤ 3.00 ≤ 1.10 ≤ 1.40 ≤ 2.30 ≤ 3.00 ≤	$\begin{array}{c} \textbf{V_{CC}} \\ \textbf{(V)} \\ 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.60 \\ \forall_{CC} \leq 1.95 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 3.60 \\ 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.60 \\ \forall_{CC} \leq 1.95 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 3.60 \\ \end{array}$	Min 5.5 4.5 3.5 2.5 1.5 6.5 5.0 4.0 3.0	Typ 40 14 10 8 6 5 41 15 10 8 6 5 41 45 40 5 44 46	Max 28.0 17.0 14.0 0.0 8.0 29.0 18.0 15.0 11.0	Min 5.0 4.0 3.0 2.0 1.0 6.0 4.5 3.5 2.5	Max 51.0 21.0 17.0 13.0 12.0 52.0 22.0 18.0 14.0	ns	C _L = R _L = C _L =	: 10 pF : 1 ΜΩ : 15 pF	Figur 11, 1
	Parameter Propagation Delay Propagation Delay	$1.10 \le 1.40 \le 1.65 \le 2.30 \le 3.00 \le 1.40 \le 1.65 \le 2.30 \le 3.00 \le 1.40 \le 1.65 \le 2.30 \le 3.00 \le 1.10 \le 1.40 \le $	$\begin{array}{c} \textbf{V_{CC}} \\ \textbf{(V)} \\ 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.60 \\ \forall_{CC} \leq 1.95 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 3.60 \\ 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.60 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 3.60 \\ 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.60 \\ \end{array}$	Min 5.5 3.5 2.5 1.5 6.5 5.0 4.0 3.0 2.0 7.0 5.5	Typ 40 14 10 8 6 5 41 15 10 8 6 5 46 17 11	Max 28.0 17.0 14.0 10.0 8.0 29.0 18.0 15.0 11.0 9.0 32.0 20.0	Min 5.0 4.0 3.0 2.0 1.0 6.0 4.5 3.5 2.5 1.5	Max 51.0 21.0 17.0 13.0 12.0 52.0 22.0 18.0 14.0 12.0 55.0 24.0	ns	C _L = R _L = C _L = R _L =	: 10 pF : 1 MΩ : 15 pF : 1 MΩ : 30 pF	Figur 11, 1 Figur 11, 1
Symbol t _{РНL} , t _{РLH} t _{РLL} , t _{РLH}	Parameter Propagation Delay Propagation Delay	$\begin{array}{c} 1.10 \leq \\ 1.40 \leq \\ 2.30 \leq \\ 3.00 \leq \\ 3.00 \leq \\ 1.10 \leq \\ 2.30 \leq \\ 3.00 \leq \\ 1.10 \leq \\ 1.40 \leq \\ 1.40 \leq \\ 1.65 \leq \\ \end{array}$	$\begin{array}{c} \textbf{V}_{CC} \\ \textbf{(V)} \\ 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.60 \\ \forall_{CC} \leq 1.95 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 3.60 \\ 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.60 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 3.60 \\ 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.60 \\ \forall_{CC} \leq 1.95 \\ \end{array}$	Min 5.5 3.5 2.5 1.5 6.5 5.0 4.0 3.0 2.0 7.0 5.5 4.5	Typ 40 14 10 8 6 5 41 15 10 8 6 5 46 17 11 9	Max 28.0 17.0 14.0 10.0 8.0 29.0 18.0 15.0 11.0 9.0 32.0 20.0 17.0	Min 5.0 4.0 3.0 2.0 1.0 6.0 4.5 3.5 2.5 1.5 6.5 5.0 4.0	Max 51.0 21.0 17.0 13.0 22.0 18.0 14.0 12.0 55.0 24.0 20.0	ns	C _L = R _L = C _L = R _L =	: 10 pF : 1 MΩ : 15 pF : 1 MΩ	Figur 11, 1 Figur 11, 1
Symbol t _{РНL} , t _{РLH} t _{РLL} , t _{РLH}	Parameter Propagation Delay Propagation Delay	$\begin{array}{c} 1.10 \leq \\ 1.40 \leq \\ 2.30 \leq \\ 3.00 \leq \\ 1.40 \leq \\ 3.00 \leq \\ 3.00 \leq \\ 1.40 \leq \\ 2.30 \leq \\ \end{array}$	$\begin{array}{c} \textbf{V}_{\textbf{CC}} \\ \textbf{(V)} \\ 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.95 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 3.60 \\ 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.60 \\ \forall_{CC} \leq 1.95 \\ \forall_{CC} \leq 3.60 \\ 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.60 \\ \forall_{CC} \leq 1.95 \\ \forall_{CC} \leq 2.70 \\ \end{array}$	Min 5.5 3.5 2.5 5.0 4.0 3.0 2.0 7.0 5.5 4.5 3.5	Typ 40 14 10 8 6 5 41 15 10 8 6 5 46 17 11 9 7	Max 28.0 17.0 14.0 10.0 8.0 29.0 18.0 15.0 11.0 9.0 32.0 20.0 17.0 12.0	Min 5.0 4.0 3.0 2.0 1.0 6.0 4.5 3.5 2.5 1.5 6.5 5.0 4.0 3.0	Max 51.0 21.0 17.0 13.0 12.0 52.0 22.0 18.0 14.0 12.0 55.0 24.0 20.0 15.0	ns	C _L = R _L = C _L = R _L =	: 10 pF : 1 MΩ : 15 pF : 1 MΩ : 30 pF	Figur 11, 1 Figur 11, 1
Symbol t _{PHL} , t _{PLH} t _{PLH} t _{PLH}	Propagation Delay Propagation Delay Propagation Delay	$\begin{array}{c} 1.10 \leq \\ 1.40 \leq \\ 2.30 \leq \\ 3.00 \leq \\ 1.40 \leq \\ 3.00 \leq \\ 3.00 \leq \\ 1.40 \leq \\ 2.30 \leq \\ \end{array}$	$\begin{array}{c} \textbf{V}_{CC} \\ (\textbf{V}) \\ 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.60 \\ \forall_{CC} \leq 1.95 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 3.60 \\ 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 3.60 \\ 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.60 \\ \forall_{CC} \leq 1.95 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 3.60 \\ \end{array}$	Min 5.5 3.5 2.5 1.5 6.5 5.0 4.0 3.0 2.0 7.0 5.5 4.5	Typ 40 14 10 8 6 5 41 15 10 8 6 5 41 15 10 8 6 5 46 17 11 9 7 6	Max 28.0 17.0 14.0 10.0 8.0 29.0 18.0 15.0 11.0 9.0 32.0 20.0 17.0	Min 5.0 4.0 3.0 2.0 1.0 6.0 4.5 3.5 2.5 1.5 6.5 5.0 4.0	Max 51.0 21.0 17.0 13.0 22.0 18.0 14.0 12.0 55.0 24.0 20.0	ns	C _L = R _L = C _L = R _L =	: 10 pF : 1 MΩ : 15 pF : 1 MΩ : 30 pF	Figur 11, 1 Figur 11, 1
Symbol ^t PHL, ^t PLH ^t PLH, ^t PLH, ^t PLH, ^t PLH, ^c PLH	Parameter Propagation Delay Propagation Delay Propagation Delay Propagation Delay Input Capacitance	$\begin{array}{c} 1.10 \leq \\ 1.40 \leq \\ 1.65 \leq \\ 2.30 \leq \\ 3.00 \leq \\ 1.10 \leq \\ 1.40 \leq \\ 3.00 \leq \\ 3.00 \leq \\ 1.10 \leq \\ 1.40 \leq \\ 1.65 \leq \\ 2.30 \leq \\ 3.00 \leq \\ \end{array}$	$\begin{array}{c} \textbf{V_{CC}} \\ \textbf{(V)} \\ \hline 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.95 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 3.60 \\ \hline 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.60 \\ \forall_{CC} \leq 1.95 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 3.60 \\ \hline 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.60 \\ \forall_{CC} \leq 1.95 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 3.60 \\ \hline 0 \\ \hline \end{array}$	Min 5.5 3.5 2.5 5.0 4.0 3.0 2.0 7.0 5.5 4.5 3.5	Typ 40 14 10 8 6 5 41 15 10 8 6 5 46 17 11 9 7 6 2.0	Max 28.0 17.0 14.0 10.0 8.0 29.0 18.0 15.0 11.0 9.0 32.0 20.0 17.0 12.0	Min 5.0 4.0 3.0 2.0 1.0 6.0 4.5 3.5 2.5 1.5 6.5 5.0 4.0 3.0	Max 51.0 21.0 17.0 13.0 12.0 52.0 22.0 18.0 14.0 12.0 55.0 24.0 20.0 15.0	ns ns	C _L = R _L = C _L = R _L =	: 10 pF : 1 MΩ : 15 pF : 1 MΩ : 30 pF	Figur 11, 1 Figur 11, 1
Symbol t _{РНL} , t _{РLH} t _{РLH} t _{РLH}	Propagation Delay Propagation Delay Propagation Delay	$\begin{array}{c} 1.10 \leq \\ 1.40 \leq \\ 1.65 \leq \\ 2.30 \leq \\ 3.00 \leq \\ 1.10 \leq \\ 1.40 \leq \\ 3.00 \leq \\ 3.00 \leq \\ 1.10 \leq \\ 1.40 \leq \\ 1.65 \leq \\ 2.30 \leq \\ 3.00 \leq \\ \end{array}$	$\begin{array}{c} \textbf{V}_{CC} \\ (\textbf{V}) \\ 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.60 \\ \forall_{CC} \leq 1.95 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 3.60 \\ 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 3.60 \\ 0.90 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.30 \\ \forall_{CC} \leq 1.60 \\ \forall_{CC} \leq 1.95 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 2.70 \\ \forall_{CC} \leq 3.60 \\ \end{array}$	Min 5.5 3.5 2.5 5.0 4.0 3.0 2.0 7.0 5.5 4.5 3.5	Typ 40 14 10 8 6 5 41 15 10 8 6 5 41 15 10 8 6 5 46 17 11 9 7 6	Max 28.0 17.0 14.0 10.0 8.0 29.0 18.0 15.0 11.0 9.0 32.0 20.0 17.0 12.0	Min 5.0 4.0 3.0 2.0 1.0 6.0 4.5 3.5 2.5 1.5 6.5 5.0 4.0 3.0	Max 51.0 21.0 17.0 13.0 12.0 52.0 22.0 18.0 14.0 12.0 55.0 24.0 20.0 15.0	ns	C _L = R _L = C _L = R _L =	: 10 pF : 1 MΩ : 15 pF : 1 MΩ : 30 pF	Figure 11, 1 Figure 11, 1



	Symbol			Vo	CC		
	0,	$\textbf{3.3V} \pm \textbf{0.3V}$	$\textbf{2.5V} \pm \textbf{0.2V}$	$\textbf{1.8V} \pm \textbf{0.15V}$	$\textbf{1.5V} \pm \textbf{0.10V}$	$\textbf{1.2V} \pm \textbf{0.10V}$	0.9V
ſ	V _{mi}	1.5V	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2
	V _{mo}	1.5V	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2

