

February 1997

Revised June 2000

AIRCHIL

SEMICONDUCTOR

NC7ST02 TinyLogic[™] HST 2-Input NOR Gate

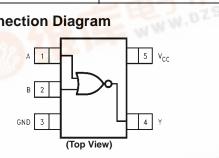
General Description

The NC7ST02 is a single 2-Input high performance CMOS NOR Gate, with TTL-compatible inputs. Advanced Silicon Gate CMOS fabrication assures high speed and low power circuit operation. ESD protection diodes inherently guard both inputs and output with respect to the $V_{\mbox{CC}}$ and GND rails. High gain circuitry offers high noise immunity and reduced sensitivity to input edge rate. The TTL-compatible inputs facilitate TTL to NMOS/CMOS interfacing. Device performance is similar to MM74HCT but with 1/2 the output current drive of HC/HCT.

Features

■ Space saving SOT23 or SC70 5-lead package

NC7ST02 TinyLogic[™] HST 2-Input NOR Gate


- I High Speed; $t_{PD} < 7$ ns typ, $V_{CC} = 5V$, $C_L = 15 \text{ pF}$
- Low Quiescent Power; I_{CC} <1 µA typ, V_{CC} = 5.5V
- Balanced Output Drive; 2 mA I_{OL}, -2 mA I_{OH}
- TTL-compatible inputs

Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As		
NC7ST02M5	MA05B	8S02	5-Lead SOT23, JEDEC MO-178, 1.6mm	250 Units on Tape and Reel		
NC7ST02M5X	MA05B	8S02	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel		
NC7ST02P5	MAA05A	T02	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	250 Units on Tape and Reel		
NC7ST02P5X	MAA05A	T02	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel		

Logic Symbol IEEE/IEC ≥ 1

Connection Diagram

Pin Descriptions

Pin Names	Description
A, B	Inputs
Y	Output

Function Table

100	Inp	Output			
(A)	Α	В	Y		
EU.	L	L	Н		
-	L	н	L		
	н	L	L		
	Н	н	L		
H = HIGH L = LOW L	Logic Level ogic Level				

TinyLogic™ is a trademark of Fairchild Semiconductor Corporation.

NC7ST02

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
V _{IN} < -0.5V	–20 mA
$V_{IN} \ge V_{CC} + 0.5V$	+20 mA
DC Input Voltage (VIN)	-0.5V to V _{CC} +0.5V
DC Output Diode Current (I _{OK})	
V _{OUT} < -0.5V	–20 mA
$V_{OUT} > V_{CC} + 0.5V$	+20 mA
Output Voltage (V _{OUT})	-0.5V to V _{CC} +0.5V
DC Output Source or Sink	
Current (I _{OUT})	±12.5 mA
DC V _{CC} or Ground Current per	
Supply Pin (I _{CC} or I _{GND})	±25 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Junction Temperature (T _J)	150°C
Lead Temperature (T _L);	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @+85°C	
SOT23-5	200 mW
SC70-5	150 mW

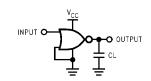
Supply Voltage	4.5V–5.5V
Input Voltage (VI)	0V-V _{CC}
Output Voltage (V _O)	0V-V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t_r, t_f)	
$V_{CC} = 5.0V$	0–500 ns
Thermal Resistance (θ_{JA})	
SOT23-5	300°C/W
SC70-5	425°C/W

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of circuits outside the databook specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$				$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	
	Farameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions	
VIH	HIGH Level Input Voltage	4.5-5.5	2.0			2.0		V		
VIL	LOW Level Input Voltage	4.5-5.5			0.8		0.8	V		
V _{OH}	HIGH Level Output Voltage	4.5	4.4	4.5		4.4			I _{OH} = -20 μA	
		4.5	4.18	4.35		4.13		V	$V_{IN} = V_{IL}$	
									$I_{OH} = -2 \text{ mA}$	
V _{OL}	LOW Level Output Voltage	4.5		0	0.1		0.1		I _{OL} = 20 μA	
		4.5		0.10	0.26		0.33	V	$V_{IN} = V_{IH}$	
									$I_{OL} = 2 \text{ mA}$	
I _{IN}	Input Leakage Current	5.5			±0.1		±1.0	μA	$0 \le V_{IN} \le 5.5V$	
I _{CC}	Quiescent Supply Current	5.5			1.0	1	10.0	μA	$V_{IN} = V_{CC} \text{ or } GND$	
ICCT	I _{CC} per Input	5.5			2.0		2.9	mA	One Input $V_{IN} = 0.5V$ or 2.4V,	
									Other Input V _{CC} or GND	


AC Electrical Characteristics

~
C
1
S
-
0
N

Symbol	Parameter	V _{CC}	T _A = +25°C			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	Fig. No.
		(V)	Min	Тур	Max	Min	Max	Units	conditions	Fig. No.
t _{PLH} ,	Propagation Delay	5.0		3.5	12			ns	C _L = 15 pF	
t _{PHL}		5.0		6.3	17					
		4.5		6.1	16		20			Figures
		4.5		11.7	27		31	ns	C ₁ = 50 pF	1, 3
		5.5		4.2	14		18	115	0L = 30 pi	
		5.5		11.4	26		30	1		
t _{TLH} ,	Output Transition Time	5.0		4	10			ns	$C_L = 15 \text{ pF}$	
t _{THL}		4.5		11	25		31	ns	C ₁ = 50 pF	Figures 1, 3
		5.5		10	21		26	115	0L = 30 pi	., -
CIN	Input Capacitance	Open		2	10			pF		
CPD	Power Dissipation Capacitance	5.0		6				pF	(Note 3)	Figure 2

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD}) (V_{CC}) (f_{|N}) + (I_{CCstatic}).$

AC Loading and Waveforms

 C_L includes load and stray capacitance Input PRR = 1.0 MHz, $t_w = 500$ ns

Input = AC Waveform; PRR = Variable; Duty Cycle = 50% FIGURE 2. I_{CCD} Test Circuit

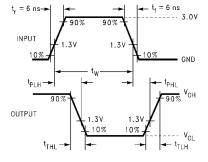
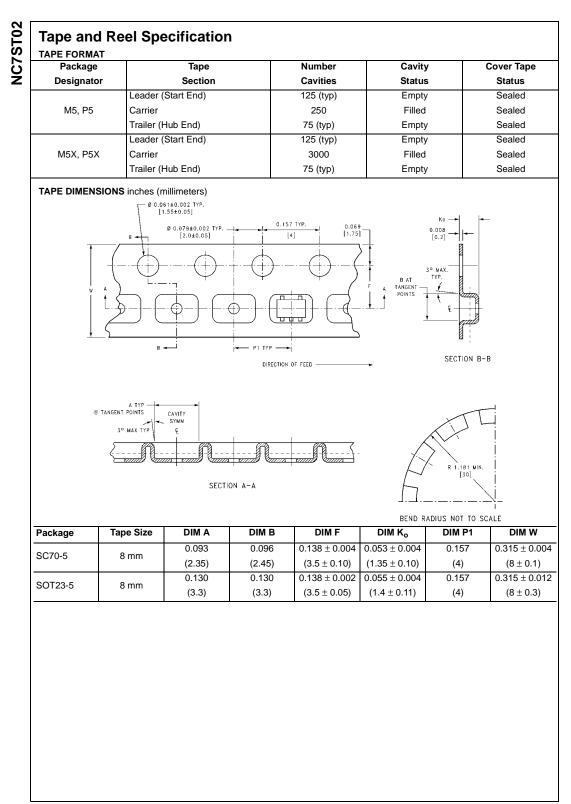
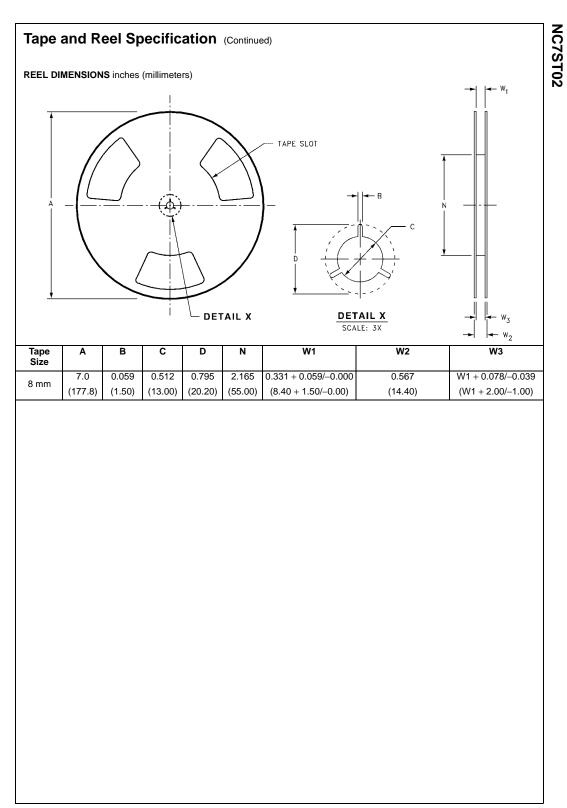
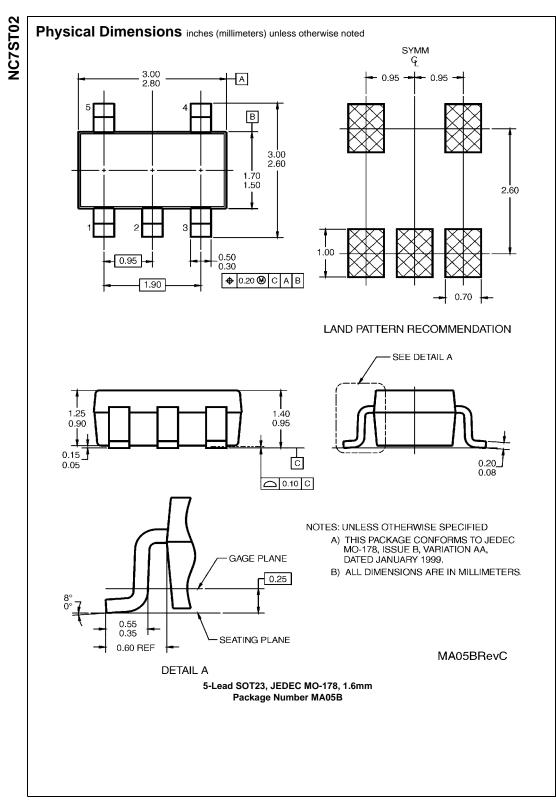
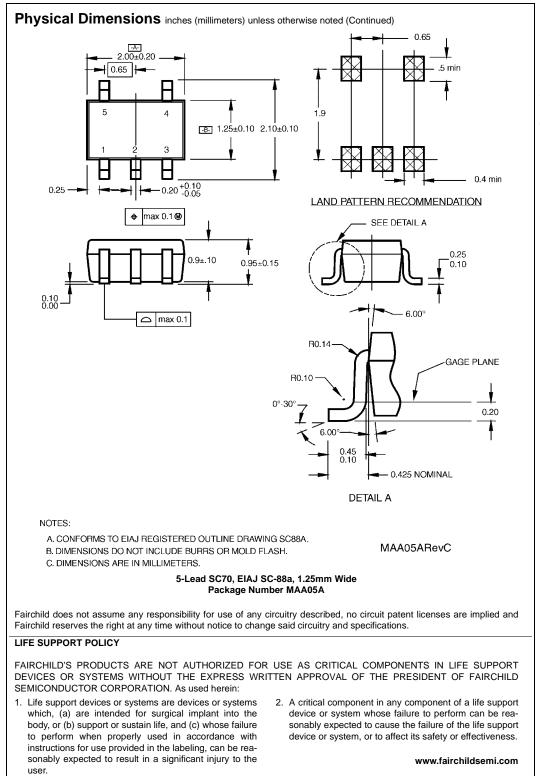






FIGURE 3. AC Waveforms

