捷多邦,专业PCB打样工厂,24小时加急出货

NCS2200 Series

Low Voltage Comparators

The NCS2200 Series is an industry first sub-one volt, low power comparator family. These devices consume only 10 μ A of supply current. They are guaranteed to operate at a low voltage of 0.85 V which allows them to be used in systems that require less than 1.0 V and are fully operational up to 6.0 V which makes them convenient for use in both 3.0 V and 5.0 V systems. Additional features include no output phase inversion with overdriven inputs, internal hysteresis, which allows for clean output switching, and rail-to-rail input and output performance. The NCS2200 Series is available in the tiny SOT-23-5 and SOT-23-6 package. There are eight options featuring two industry standard pinouts. Additionally, the NCS2200 device is available in the tiny QFN 2x2.2 package and the SC70-5 package. (Table 1)

The NCS2201/3 Series in the SOT-23-6 package features an enable function, which can be externally controlled. When the enable pin is pulled low (output tri-state mode), current consumption is typically 0.3 μ A. This allows the user to implement these devices in power sensitive applications such as portable electronics.

Features

- Operating Voltage of 0.85 V to 6.0 V
- Rail-to-Rail Input/Output Performance
- Low Supply Current of 10 μA
- No Phase Inversion with Overdriven Input Signals
- · Glitchless Transitioning in or out of Tri-State Mode
- Complementary or Open Drain Output Configuration
- Available with the Enable Function
- Internal Hysteresis
- Propagation Delay of 1.1 μs
- Pb-Free Packages are Available

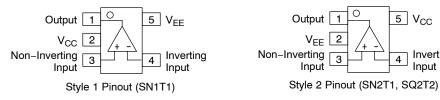
Typical Applications

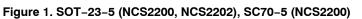
- Single Cell NiCd/NiMH Battery Powered Applications
- Cellular Telephones
- Alarm and Security Systems
- Personal Digital Assistants

Table 1. Comparator Selector Guide

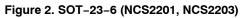
Output Type	Device	Package	Pinout Style
Complementary	NCS2200SN1T1	SOT-23-5	1
Complementary	NCS2200SN2T1	SOT-23-5	2
Complementary	NCS2200SQ2T2	SC70-5	2
Complementary, Enable	NCS2201SN1T1	SOT-23-6	1
Complementary, Enable	NCS2201SN2T1	SOT-23-6	2
Open Drain	NCS2202SN1T1	SOT-23-5	1
Open Drain	NCS2202SN2T1	SOT-23-5	2
Open Drain, Enable	NCS2203SN1T1	SOT-23-6	1
Open Drain, Enable	NCS2203SN2T1	SOT-23-6	2
Complementary	NCS2200SQLT1	QFN, 2x2.2	N/A

PIN CONNECTIONS


0


5 V_{CC}


4


Inverting

Input

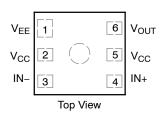


Figure 3. QFN 2x2.2 (NCS2200)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage Range (V _{CC} to V _{EE})	V _S	6.0	V
Non-inverting/Inverting Input to V _{EE}	-	–0.2 to (V _{CC} + 0.2)	V
Operating Junction Temperature	TJ	150	°C
Operating Ambient Temperature	T _A	-40 to +105	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Output Short Circuit Duration Time (Note 1)	t _S	Indefinite	S
ESD Tolerance (Note 2) NCS2200/2201 Human Body Model Machine Model NCS2202/NCS2203 Human Body Model Machine Model	-	2000 200 1000 200	V
Thermal Resistance, Junction-to-Ambient TSOP-5 QFN (Note 3) SC70-5	R _{θJA}	238 215 283	°C/W

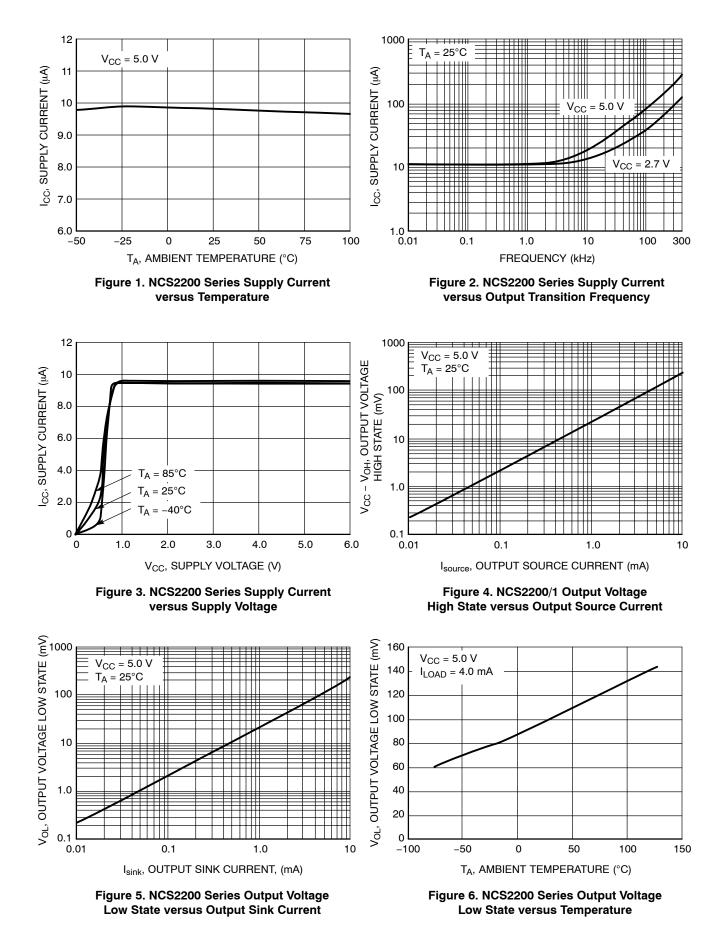
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 1. The maximum package power dissipation limit must not be exceeded.

$$P_{D} = \frac{T_{J}(max) - T_{A}}{R_{\theta}JA}$$

2. ESD data available upon request.

3. For more information, refer to application note, AND8080/D.

Characteristics	Symbol	Min	Тур	Max	Unit
Input Hysteresis T _A = 25°C	V _{HYS}	2.0	8.0	20	mV
Input Offset Voltage $V_{CC} = 0.85 V$ $T_A = 25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } 105^{\circ}C$ $V_{CC} = 3.0 V$ $T_A = 25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } 105^{\circ}C$	V _{IO}	-10 -12 -6.0 -8.0	0.5 - 0.5 -	+10 +12 +6.0 +8.0	mV
$V_{CC} = 6.0 V$ $T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to 105°C		-5.0 -7.0	0.5 _	+5.0 +7.0	
Common Mode Voltage Range	V _{CM}	-	$V_{\mbox{\scriptsize EE}}$ to $V_{\mbox{\scriptsize CC}}$	-	V
Output Leakage Current (NCS2202/NCS2203) V _{CC} = 6.0 V	I _{LEAK}	-	3.3	-	nA
Output Short-Circuit Sourcing or Sinking	I _{SC}	-	70	-	mA
Common Mode Rejection Ratio V _{CM} = V _{CC}	CMRR	53	65	-	dB
Input Bias Current	I _{IB}	-	1.0	-	pА
Power Supply Rejection Ratio ΔV_S = 2.575 V	PSRR	45	55	-	dB
Supply Current $V_{CC} = 0.85 V$ $T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to $105^{\circ}C$	Icc	-	10 -	15 17	μΑ
$V_{CC} = 3.0 \text{ V}$ $T_A = 25^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C} \text{ to } 105^{\circ}\text{C}$ $V_{CC} = 6.0 \text{ V}$		-	10 -	15 17	
$T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to 105°C		-	10 -	15 17	
Output Voltage High (NCS2200/NCS2201) $V_{CC} = 0.85 \text{ V}, I_{source} = 0.5 \text{ mA}$ $T_A = 25^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C} \text{ to } 105^{\circ}\text{C}$ $V_{CC} = 3.0 \text{ V}, I_{source} = 3.0 \text{ mA}$ $T_A = 25^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C} \text{ to } 105^{\circ}\text{C}$ $V_{CC} = 6.0 \text{ V}, I_{source} = 5.0 \text{ mA}$ $T_A = 25^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C} \text{ to } 105^{\circ}\text{C}$	V _{OH}	$V_{CC} - 0.2 \\ V_{CC} - 0.225 \\ V_{CC} - 0.2 \\ V_{CC} - 0.25 \\ V_{CC} - 0.2 \\ V_{CC} - 0.2 \\ V_{CC} - 0.25 \\ \end{array}$	$V_{CC} = 0.10$ - $V_{CC} = 0.12$ - $V_{CC} = 0.12$ -	-	v
Output Voltage Low $V_{CC} = 0.85 \text{ V}, I_{sink} = 0.5 \text{ mA}$ $T_A = 25^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C} \text{ to } 105^{\circ}\text{C}$ $V_{CC} = 3.0 \text{ V}, I_{sink} = 3.0 \text{ mA}$ $T_A = 25^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C} \text{ to } 105^{\circ}\text{C}$ $V_{CC} = 6.0 \text{ V}, I_{sink} = 5.0 \text{ mA}$ $T_A = 25^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C} \text{ to } 105^{\circ}\text{C}$	V _{OL}	-	V _{EE} + 0.10 - V _{EE} + 0.12 - V _{EE} + 0.12 -	V _{EE} + 0.2 V _{EE} + 0.225 V _{EE} + 0.2 V _{EE} + 0.25 V _{EE} + 0.25 V _{EE} + 0.25	V
Propagation Delay 20 mV Overdrive, $C_L = 15 \text{ pF}$	t _{PHL} t _{PLH}		0.7 1.1		μs
Output Fall Time V_{CC} = 6.0 V, C _L = 50 pF	t _{FALL}	-	20	-	ns
Output Rise Time V_{CC} = 6.0 V, C _L = 50 pF	t _{RISE}	-	16	-	ns
Powerup Time	t _{PU}	_	35	-	μS


ELECTRICAL CHARACTERISTICS (For all values V_{CC} = 0.85 V to 6.0 V, V_{EE} = 0 V, T_A = 25°C, unless otherwise noted.) (Note 4)

4. The limits over the extended temperature range are guaranteed by design only.

ENABLE FUNCTION ELECTRICAL CHARACTERISTICS (NCS2201/NCS2203 only) (For all values $V_{CC} = 6.0 \text{ V}$, $V_{EE} = 0 \text{ V}$, $T_A = 25^{\circ}C$, unless otherwise noted.) (Note 5)

Characteristics	Symbol	Min	Тур	Max	Unit
Enable Voltage Threshold Input Voltage Increasing, Device Enabled Input Voltage Decreasing, Device Disabled	V _{EN(HIGH)} V _{EN(LOW)}	_ 2.0	3.2 2.2	4.0 _	V
Enable Hysteresis	V _{ENHYS}	-	1.0	-	V
Enable Pullup Current	I _{EN}	-	100	200	nA
Disable State Supply Current	I _{CCD}	-	300	600	nA
Enable Input to Output Propagation Delay Input Voltage Increasing, Device Enabled Input Voltage Decreasing, Device Disabled	t _{EN(ON)} t _{EN(OFF)}		82 0.5		μs

5. The limits over the extended temperature range are guaranteed by design only.

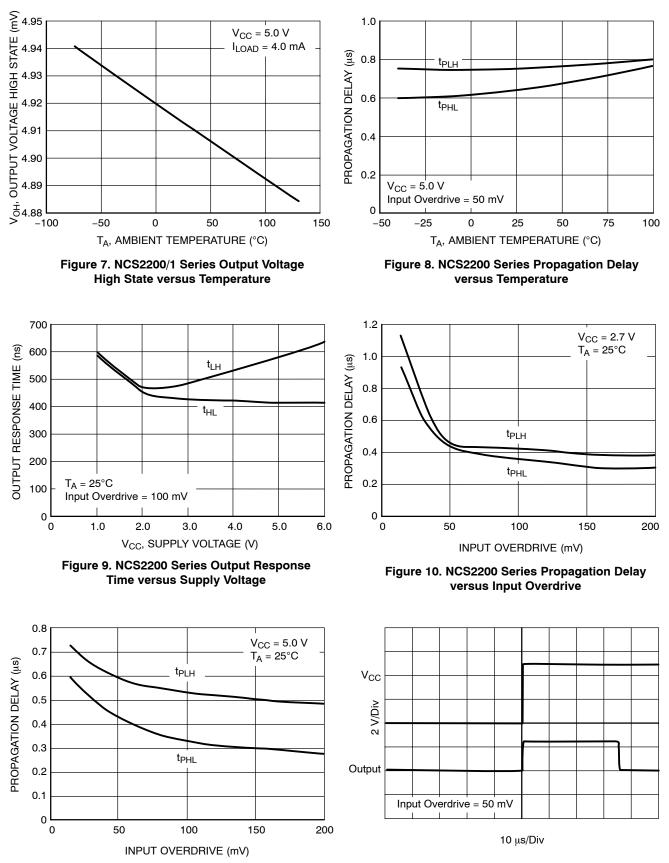
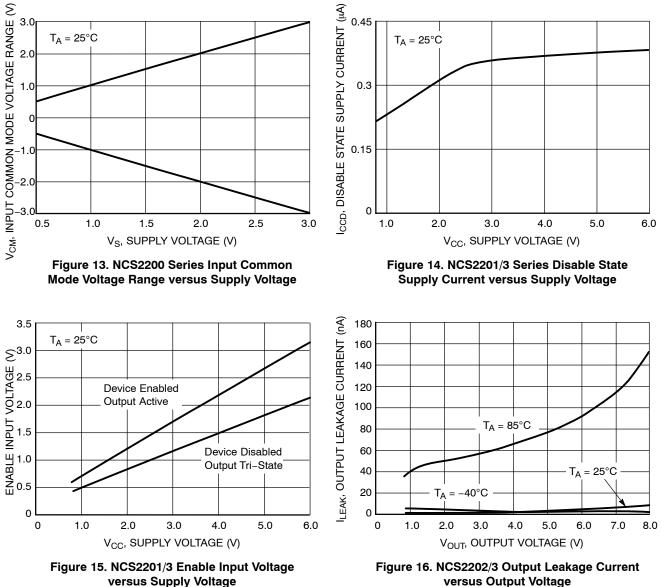



Figure 12. NCS2200 Series Powerup Delay

OPERATING DESCRIPTION

The NCS2200 Series is an industry first sub-one volt, low power comparator family. This series is designed for rail-to-rail input and output performance. These devices consume only 10 µA of supply current while achieving a typical propagation delay of 1.1 µs at a 20 mV input overdrive. Figures 10 and 11 show propagation delay with various input overdrives. This comparator family is guaranteed to operate at a low voltage of 0.85 V up to 6.0 V. This is accomplished by the use of a modified analog CMOS process that implements depletion MOSFET devices. The common-mode input voltage range extends 0.1 V beyond the upper and lower rail without phase inversion or other adverse effects. This series is available in the SOT-23-5 and SOT-23-6 package. Additionally, the NCS2200 device is available in the tiny QFN 2x2.2 package and the SC70-5 package.

The SOT-23-6 features the enable function, which can be externally controlled. This feature allows significantly lower current consumption of 0.3 μ A. This makes the devices suitable for implementation in power sensitive applications such as portable electronics. The enable

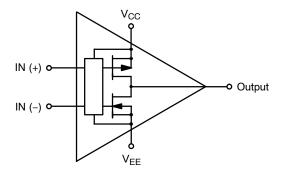


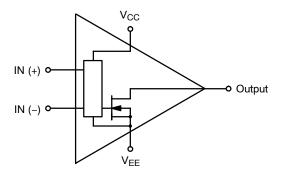
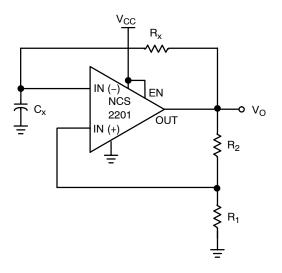
Figure 17. NCS2200/1SNxT1 Complementary Output Configuration

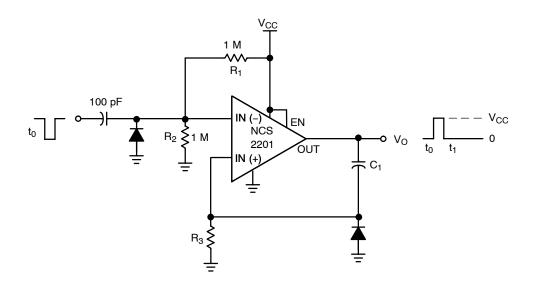
function is active high when connected to the V_{CC} pin. When the enable pin is driven low (device disabled), output tri–state mode is activated. The device will remain in this mode and will not respond to any changes at the inputs of the comparator. In order to pull the device out of tri–state mode, the enable upper voltage threshold must be met. Figure 15 shows the enable input voltage required to either enable or disable the device, with a variance in supply voltage. In addition, these devices have a typical internal hysteresis of ± 8.0 mV. This allows for greater noise immunity and clean output switching.

Output Stage

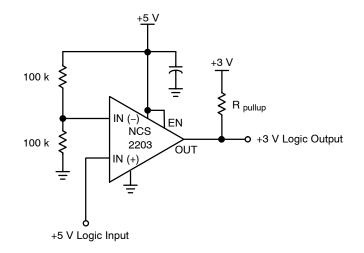
The NCS2200/1 has a complementary P and N Channel output stage that has capability of driving a rail-to-rail output swing with a load ranging up to 5.0 mA. It is designed such that shoot-through current is minimized while switching. This feature eliminates the need for bypass capacitors under most circumstances.

The NCS2202/3 has an open drain N-channel output stage that can be pulled up to 6.0 V (max) with an external resistor. This facilitates mixed voltage system applications.


Figure 18. NCS2202/3SNxT1 Open Drain Output Configuration

The oscillation frequency can be programmed as follows:


$$f = \frac{1}{T} = \frac{1}{2.2 R_X C_X}$$

The resistor divider R_1 and R_2 can be used to set the magnitude of the input pulse. The pulse width is set by adjusting C_1 and R_3 .

Figure 20. One-Shot Multivibrator

This circuit converts 5 V logic to 3 V logic. Using the NCS2202/3 allows for full 5 V logic swing without creating overvoltage on the 3 V logic input.

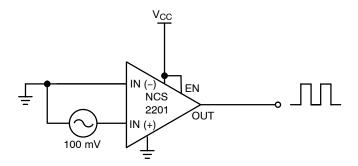
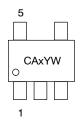


Figure 22. Zero-Crossing Detector

ORDERING INFORMATION


Device	Pinout Style	Output Type	Package	Shipping [†]
NCS2200SN1T1	1	Complementary	SOT-23-5	3000 / Tape & Reel
NCS2200SN1T1G	1	Complementary	SOT-23-5 (Pb-Free)	3000 / Tape & Reel
NCS2200SN2T1	2	Complementary	SOT-23-5	3000 / Tape & Reel
NCS2200SN2T1G	2	Complementary	SOT-23-5 (Pb-Free)	3000 / Tape & Reel
NCS2200SQ2T2	2	Complementary	SC70-5	3000 / Tape & Reel
NCS2200SQ2T2G	2	Complementary	SC70–5 (Pb–Free)	3000 / Tape & Reel
NCS2200SQLT1	N/A	Complementary	QFN, 2x2.2	3000 / Tape & Reel
NCS2200SQLT1G	N/A	Complementary	QFN, 2x2.2 (Pb-Free)	3000 / Tape & Reel
NCS2201SN1T1	1	Complementary, Enable	SOT-23-6	3000 / Tape & Reel
NCS2201SN1T1G	1	Complementary, Enable	SOT-23-6 (Pb-Free)	3000 / Tape & Reel
NCS2201SN2T1	2	Complementary, Enable	SOT-23-6	3000 / Tape & Reel
NCS2201SN2T1G	2	Complementary, Enable	SOT-23-6 (Pb-Free)	3000 / Tape & Reel
NCS2202SN1T1	1	Open Drain	SOT-23-5	3000 / Tape & Reel
NCS2202SN1T1G	1	Open Drain	SOT-23-5 (Pb-Free)	3000 / Tape & Reel
NCS2202SN2T1	2	Open Drain	SOT-23-5	3000 / Tape & Reel
NCS2202SN2T1G	2	Open Drain	SOT-23-5 (Pb-Free)	3000 / Tape & Reel
NCS2203SN1T1	1	Open Drain, Enable	SOT-23-6	3000 / Tape & Reel
NCS2203SN1T1G	1	Open Drain, Enable	SOT-23-6 (Pb-Free)	3000 / Tape & Reel
NCS2203SN2T1	2	Open Drain, Enable	SOT-23-6	3000 / Tape & Reel
NCS2203SN2T1G	2	Open Drain, Enable	SOT-23-6 (Pb-Free)	3000 / Tape & Reel

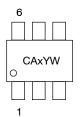
This device contains 93 active transistors.

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

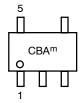
MARKING DIAGRAMS

SOT-23-5 SN SUFFIX CASE 483

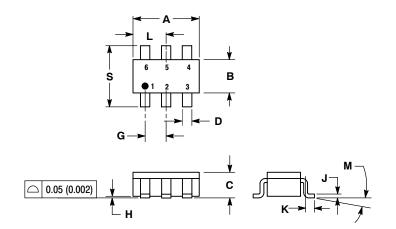
- x = I for NCS2200SN1T1 J for NCS2200SN2T1 M for NCS2202SN1T1 N for NCS2202SN2T1
- Y = Year
- W = Work Week


QFN 2x2.2 SQL SUFFIX CASE 488

(Top View)

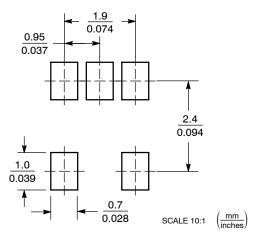

XX = CB for NCS2200SQLT1 M = Date Code

- x = K for NCS2201SN1T1 L for NCS2201SN2T1 O for NCS2203SN1T1 P for NCS2203SN2T1
- Y = Year
- W = Work Week


SC70-5 SQ SUFFIX CASE 419A

CBA = Specific Device Code ^m = Date Code

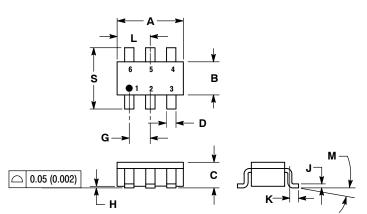
PACKAGE DIMENSIONS


SOT-23-5 / TSOP-5 / SC59-5 **SN SUFFIX** PLASTIC PACKAGE CASE 483-02 ISSUE C

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.1142	0.1220
В	1.30	1.70	0.0512	0.0669
C	0.90	1.10	0.0354	0.0433
D	0.25	0.50	0.0098	0.0197
G	0.85	1.05	0.0335	0.0413
Н	0.013	0.100	0.0005	0.0040
J	0.10	0.26	0.0040	0.0102
Κ	0.20	0.60	0.0079	0.0236
L	1.25	1.55	0.0493	0.0610
М	0 °	10°	0 °	10°
S	2.50	3.00	0.0985	0.1181

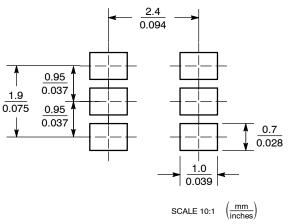
SOLDERING FOOTPRINT*



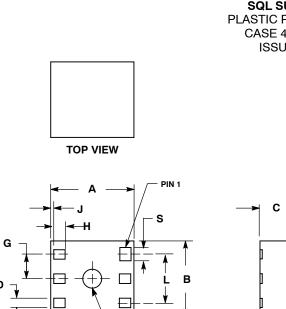
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOT-23-6 / TSOP-6 / SC59-6 **SN SUFFIX** PLASTIC PACKAGE


CASE 318G-02 **ISSUE N**

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- OI DAGE WALERIAL.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.


	MILLIMETERS		INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.1142	0.1220	
В	1.30	1.70	0.0512	0.0669	
С	0.90	1.10	0.0354	0.0433	
D	0.25	0.50	0.0098	0.0197	
G	0.85	1.05	0.0335	0.0413	
Н	0.013	0.100	0.0005	0.0040	
J	0.10	0.26	0.0040	0.0102	
K	0.20	0.60	0.0079	0.0236	
L	1.25	1.55	0.0493	0.0610	
М	0 °	10 °	0 °	10 °	
S	2.50	3.00	0.0985	0.1181	

SOLDERING FOOTPRINT*

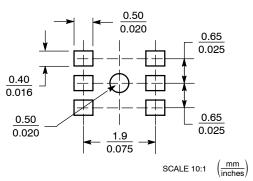
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

QFN 2x2.2 SQL SUFFIX PLASTIC PACKAGE CASE 488-03 ISSUE E

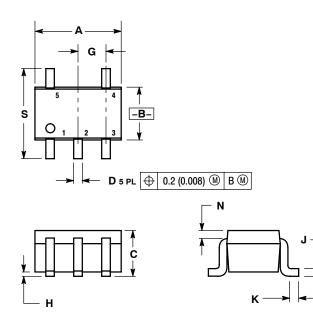
- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. 488–01 OBSOLETE. NEW STANDARD IS 488–02.

	MILLIMETERS		TERS INCHES	
DIM	MIN	MAX	MIN	MAX
Α	2.18	2.23	0.086	0.088
В	1.98	2.03	0.078	0.080
С	0.88	0.93	0.035	0.037
D	0.23	0.28	0.009	0.011
G	0.65	0 BSC	0.026 BSC	
Н	0.35	0.40	0.014	0.016
J	0.05	0.10	0.002	0.004
L	1.28	1.33	0.050	0.052
S	0.33	0.38	0.013	0.015
C	0.50	BSC	0.02	BSC


υQ **BOTTOM VIEW**

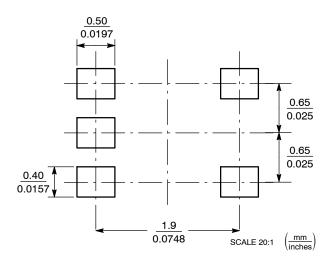
D

4


SIDE VIEW

SOLDERING FOOTPRINT

PACKAGE DIMENSIONS


SC70-5/SC88A (SOT-353) SQ SUFFIX CASE 419A-02 ISSUE G

NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 419A-01 OBSOLETE. NEW STANDARD 419A-02.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.071	0.087	1.80	2.20
В	0.045	0.053	1.15	1.35
С	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026	BSC	0.65 BSC	
Н		0.004		0.10
J	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	0.30
N	0.008 REF		0.20	REF
S	0.079	0.087	2.00	2.20

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons, and reasonable attorney fees anising out of, directly or indirectly, any claim of personal injury or death agolecultor is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro-ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.