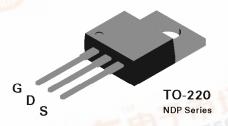
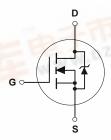


June 1996


NDP7061L / NDB7061L N-Channel Logic Level Enhancement Mode Field Effect Transistor

General Description


These logic level N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulses in the avalanche and commutation modes. These devices are particularly suited for low voltage applications such as automotive, DC/DC converters, PWM motor controls, and other battery powered circuits where fast switching, low in-line power loss, and resistance to transients are needed.

Features

- 60 A, 60 V. $R_{DS(ON)}$ = 0.018 Ω @ V_{GS} = 5 V $R_{DS(ON)}$ = 0.013 Ω @ V_{GS} = 10 V.
- Low drive requirements allowing operation directly from logic drivers. V_{GS(TH)} < 2.0V.
- Rugged internal source-drain diode can eliminate the need for an external Zener diode transient suppressor.
- 175°C maximum junction temperature rating.
- High density cell design for extremely low R_{DS(ON)}.
- TO-220 and TO-263 (D²PAK) package for both through hole and surface mount applications.

Absolute Maximum Ratings T_c = 25°C unless otherwise noted

Symbol	Parameter	NDP7061L	NDB7061L	Units			
V _{DSS}	Drain-Source Voltage	60					
V_{DGR}	Drain-Gate Voltage ($R_{GS} \le 1 \text{ M}\Omega$)	60					
V _{GSS}	Gate-Source Voltage - Continuous	±16					
	- Nonrepetitive (t _P < 50 μs)	± 25	j				
I _D	Drain Current - Continuous	60		Α			
	- Pulsed	180					
P _D	Maximum Power Dissipation @ T _c = 25°C	130		W			
	Derate above 25°C	0.87	,	W/°C			
T _J ,T _{STG}	Operating and Storage Temperature Range	-65 to ²	175	°C			

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
DRAIN-S	OURCE AVALANCHE RATINGS (Note 1)						
W _{DSS}	Single Pulse Drain-Source Avalanche Energy	$V_{DD} = 30 \text{ V}, I_{D} = 60 \text{ A}$				500	mJ
I _{AR}	Maximum Drain-Source Avalanche Curr	ent				60	Α
OFF CHA	ARACTERISTICS						
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		60			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 48 \text{ V}, V_{GS} = 0 \text{ V}$				10	μΑ
			T _J = 125°C			1	mA
I _{GSSF}	Gate - Body Leakage, Forward	$V_{GS} = 16 \text{ V}, V_{DS} = 0 \text{ V}$				100	nA
I _{GSSR}	Gate - Body Leakage, Reverse	$V_{GS} = -16 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA
ON CHAP	RACTERISTICS (Note 1)						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$		1	1.2	2	V
			T _J = 125°C	0.65	0.7	1.5	
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 5 \text{ V}, I_{D} = 30 \text{ A}$			0.013	0.018	Ω
			T _J = 125°C		0.023	0.032	
		$V_{GS} = 10 \text{ V}, I_{D} = 30 \text{ A}$	•		0.011	0.013	
I _{D(on)}	On-State Drain Current	$V_{GS} = 5 \text{ V}, V_{DS} = 10 \text{ V}$		60			Α
g _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, I_{D} = 30 \text{ A}$			45		S
DYNAMIC	CCHARACTERISTICS						
C _{iss}	Input Capacitance	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz			2600		pF
C _{oss}	Output Capacitance	f = 1.0 MHz			690		pF
C _{rss}	Reverse Transfer Capacitance				220		pF
SWITCHI	NG CHARACTERISTICS (Note 1)					•	,
t _{D(on)}	Turn - On Delay Time	$V_{DD} = 30 \text{ V}, I_{D} = 60 \text{A},$			18	35	nS
t,	Turn - On Rise Time	$V_{GS} = 5 \text{ V}, R_{GEN} = 10 \Omega$ $R_{GS} = 10 \Omega$			430	600	nS
t _{D(off)}	Turn - Off Delay Time				63	120	nS
t _f	Turn - Off Fall Time				240	400	nS
Q_g	Total Gate Charge	V _{DS} = 12 V			52	75	nC
Q_{gs}	Gate-Source Charge	$I_D = 60 \text{ A}, V_{GS} = 5 \text{ V}$			9		nC
Q_{gd}	Gate-Drain Charge				28		nC

Symbol	Parameter	Conditions			Тур	Max	Units
DRAIN-S	OURCE DIODE CHARACTERISTICS						
I _s	Maximum Continuos Drain-Source Diode Forward Current					60	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current					180	Α
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 30 \text{ A (Note 1)}$			0.9	1.3	V
			T _J = 125°C		0.8	1.2	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 \text{ V}, I_F = 60\text{A},$		40		150	ns
I _{rr}	Reverse Recovery Current	$- dl_{F}/dt = 100 A/\mu s$		2		10	Α
THERMA	AL CHARACTERISTICS						
R _{OJC}	Thermal Resistance, Junction-to-Case			1.15	°C/W		
R _{BJA}	Thermal Resistance, Junction-to-Ambient					62.5	°C/W

Note: 1. Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%.

Typical Electrical Characteristics

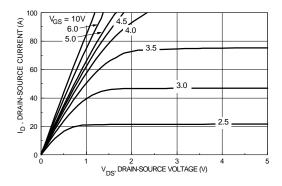


Figure 1. On-Region Characteristics.

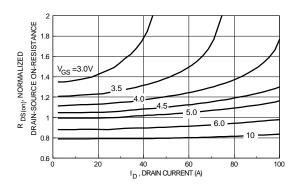


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

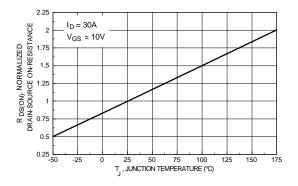


Figure 3. On-Resistance Variation with Temperature.

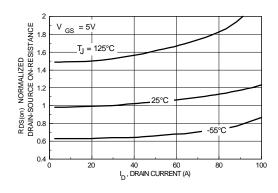


Figure 4. On-Resistance Variation with Drain Current and Temperature.

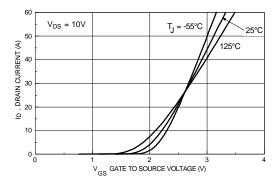


Figure 5. Transfer Characteristics.

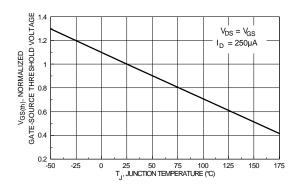


Figure 6. Gate Threshold Variation with Temperature.

Typical Electrical Characteristics (continued)

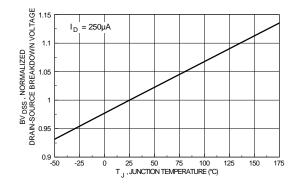


Figure 7. Breakdown Voltage Variation with Temperature.

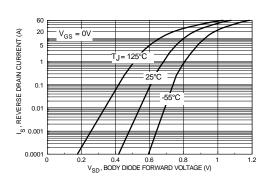


Figure 8. Body Diode Forward Voltage Variation with Current and Temperature.

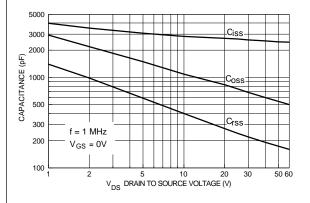


Figure 9. Capacitance Characteristics.

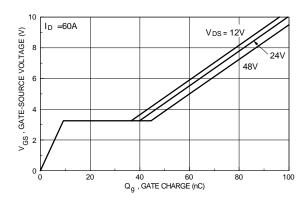


Figure 10. Gate Charge Characteristics.

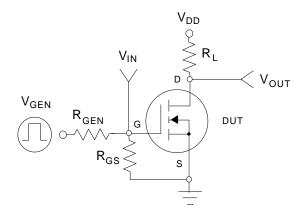


Figure 11. Switching Test Circuit.

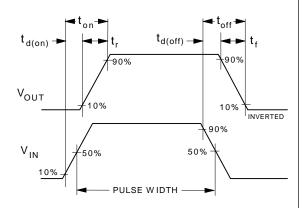
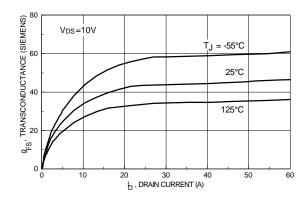



Figure 12. Switching Waveforms.

Typical Electrical Characteristics (continued)

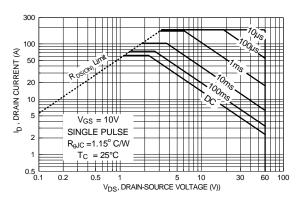
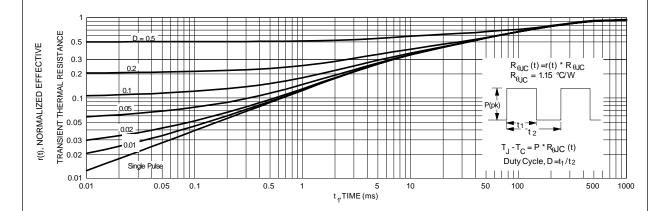
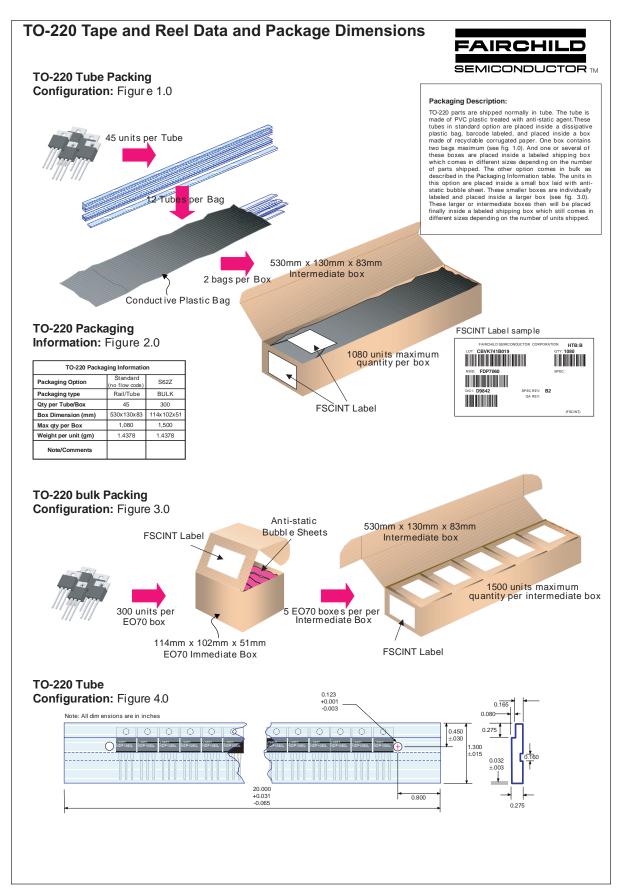
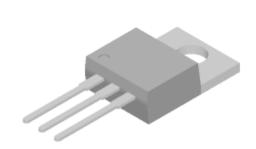
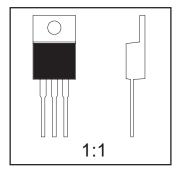


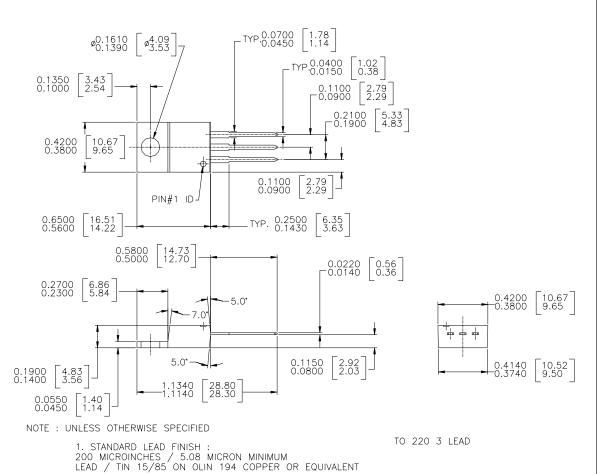
Figure 13. Transconductance Variation with Drain Current and Temperature.

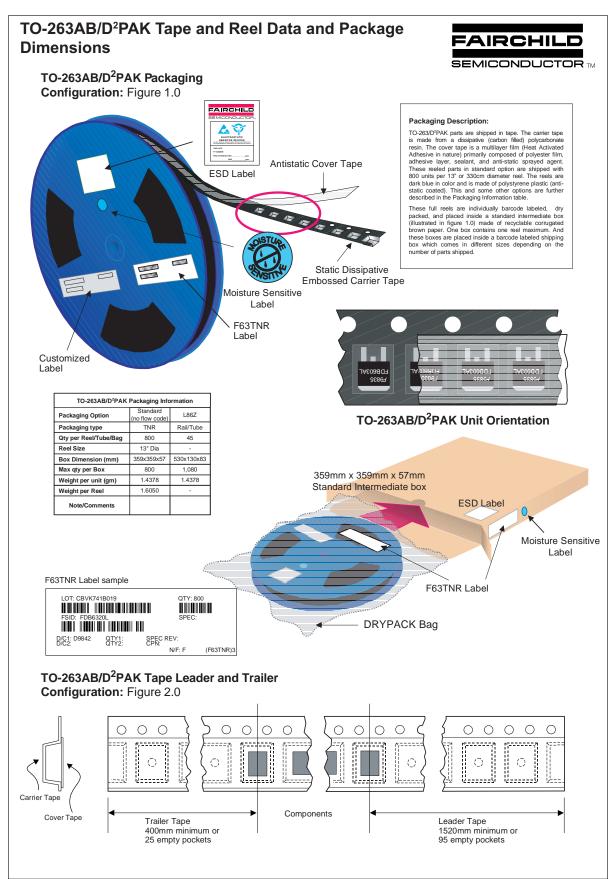
Figure 14. Maximum Safe Operating Area.


Figure 15. Transient Thermal Response Curve.

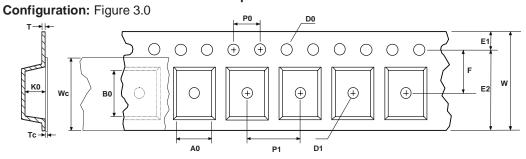
TO-220 Tape and Reel Data and Package Dimensions, continued


TO-220 (FS PKG Code 37)



Scale 1:1 on letter size paper
Dimensions shown below are in:
inches [millimeters]

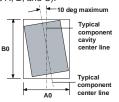
Part Weight per unit (gram): 1.4378



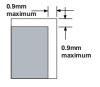
2. DIMENSION BASED ON JEDEC STANDARD TO-220 VARIATION AB, ISSUE J, DATED 3/24/87

TO-263AB/D²PAK Tape and Reel Data and Package Dimensions, continued

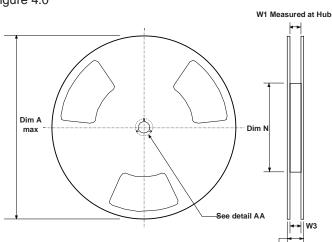
TO-263AB/D²PAK Embossed Carrier Tape


User Direction of Feed

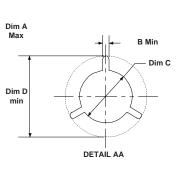
Dimensions are in millimeter														
Pkg type	Α0	В0	w	D0	D1	E1	E2	F	P1	P0	K0	Т	Wc	Тс
TO263AB/ D ² PAK (24mm)	10.60 +/-0.10	15.80 +/-0.10	24.0 +/-0.3	1.55 +/-0.05	1.60 +/-0.10	1.75 +/-0.10	22.25 min	11.50 +/-0.10	16.0 +/-0.1	4.0 +/-0.1	4.90 +/-0.10	0.450 +/-0.150	21.0 +/-0.3	0.06 +/-0.02


Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

Sketch A (Side or Front Sectional View)
Component Rotation



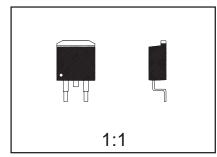
Sketch B (Top View)
Component Rotation



Sketch C (Top View)
Component lateral movement

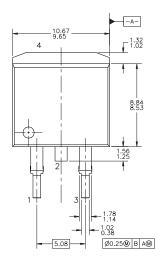
TO-263AB/D²PAK Reel Configuration: Figure 4.0

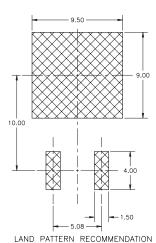
13" Diameter Option

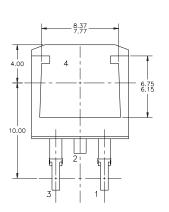

W2 max Measured at Hub

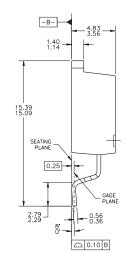
Dimensions are in inches and millimeters Reel Tape Size Dim A Dim B Dim C Dim D Dim N Dim W1 Dim W2 Dim W3 (LSL-USL) Option 512 +0.020/-0.008 13 +0.5/-0.2 0.961 +0.078/-0.000 24.4 +2/0 0.941 - 0.1.079 23.9 - 27.4 0.059 1.5 24mm 13" Dia

TO-263AB/D²PAK Tape and Reel Data and Package Dimensions, continued


TO-263AB/D²PAK (FS PKG Code 45)






Scale 1:1 on letter size paper Dimensions shown below are in: inches [millimeters]

Part Weight per unit (gram): 1.4378

- NOTES: UNLESS OTHERWISE SPECIFIED

 A) ALL DIMENSIONS ARE IN MILLIMETERS.
 B) STANDARD LEAD FINISH:
 200 MICROINCHES / 5.08 MICROMETERS MIN.
 LEAD/TIN 15/85 ON OLIN 194 COPPER OR
 EQUIVALENT.
 C) MAXIMUM YERTICAL BURR ON HEATSINK NOT
 TO EXCEED 0.003 INCH / 0.05mm.
 D) NO PACKAGE CHIPS, CRACKS OR SURFACE
 IDENTIFICATION ALLOWED AFTER FORMING.
 E) REFERENCE JEDEC, TO—263, ISSUE C,
 VARIATION AB, DATED 2/92.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FACT™ QFET™ FACT Quiet Series™ QS™

 $\begin{array}{lll} \mathsf{FAST}^{\circledast} & \mathsf{Quiet\,Series^{\mathsf{TM}}} \\ \mathsf{FASTr^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}\text{-}3} \\ \mathsf{GTO^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}\text{-}6} \\ \mathsf{HiSeC^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}\text{-}8} \\ \end{array}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.