

# NEC's NPN SiGe HIGH FREQUENCY TRANSISTOR

NESG3031M05

### **FEATURES**

LOW NOISE FIGURE AND HIGH-GAIN

NF=0.95 dB TYP,  $G_a$ =10 dB TYP @ VCE=2 V, IC=6 mA, f=5.2 GHz NF=1.1 dB TYP,  $G_a$ =9.5 dB TYP @ VCE=2 V, IC=6 mA, f=5.8 GHz

MAXIMUM STABLE POWER GAIN:

MSG = 14.0 dB TYP @ VCE = 3 V, IC = 20 mA, f = 5.8 GHz

• SiGe HBT TECHNOLOGY:

USH3 process, fmax = 110 GHz

M05 PACKAGE:

Flat-lead 4 pin thin-type super minimold package

### **ORDERING INFORMATION**

| PART NUMBER    | QUANTITY          | SUPPLYING FORM                                                           |  |
|----------------|-------------------|--------------------------------------------------------------------------|--|
| NESG3031M05    | 50 pcs (Non reel) | 8 mm wide embossed taping                                                |  |
| NESG3031M05-T1 | 3 kpcs/reel       | Pin 3 (Collector), Pin 4 (Emitter) face the perforation side of the tape |  |

**Remark** To order evaluation samples, contact your nearby sales office. Unit sample quantity is 50 pcs.

### ABSOLUTE MAXIMUM RATINGS (TA = +25°C)

| PARAMETER                    | SYMBOL                | RATINGS     | UNIT |
|------------------------------|-----------------------|-------------|------|
| Collector to Base Voltage    | Vcво                  | 12.0        | V    |
| Collector to Emitter Voltage | Vceo                  | 4.3         | V    |
| Emitter to Base Voltage      | VEBO                  | 1.5         | V    |
| Collector Current            | Ic                    | 35          | mA   |
| Total Power Dissipation      | P <sub>tot</sub> Note | 150         | mW   |
| Junction Temperature         | Tj                    | 150         | °C   |
| Storage Temperature          | Tstg                  | -65 to +150 | °C   |

**Note** Mounted on  $38 \times 38$  mm, t = 0.4 mm polyimide PCB



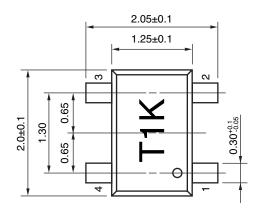
# NESG3031M05

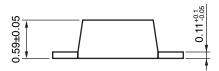
# **ELECTRICAL CHARACHTERISTICS** (TA = 25°C)

| PARAMETER                         | SYMBOL                          | TEST CONDITIONS                                                 | MIN. | TYP. | MAX. | UNIT |  |
|-----------------------------------|---------------------------------|-----------------------------------------------------------------|------|------|------|------|--|
| DC Characteristics                |                                 |                                                                 |      |      |      |      |  |
| Collector Cut-off Current         | Ісво                            | Vcb = 5 V, IE = 0 mA                                            | _    | _    | 100  | nA   |  |
| Emitter Cut-off Current           | ІЕВО                            | V <sub>EB</sub> = 1 V, I <sub>C</sub> = 0 mA                    | -    | -    | 100  | nA   |  |
| DC Current Gain                   | hfe Note 1                      | Vce = 2 V, Ic = 6 mA                                            | 220  | 300  | 380  | -    |  |
| RF Characteristics                |                                 |                                                                 | •    |      |      |      |  |
| Insertion Power Gain              | S <sub>21e</sub>   <sup>2</sup> | Vce = 3 V, Ic = 20 mA, f = 5.8 GHz                              | 6.0  | 8.5  | -    | dB   |  |
| Noise Figure (1)                  | NF                              | Vce = 2 V, Ic = 6 mA, f = 5.2 GHz,                              | _    | 0.95 | _    | dB   |  |
|                                   |                                 | $Z_S = Z_{Sopt}, Z_L = Z_{Lopt}$                                |      |      |      |      |  |
| Noise Figure (2)                  | NF                              | $V_{CE} = 2 \text{ V, Ic} = 6 \text{ mA, f} = 5.8 \text{ GHz},$ | _    | 1.1  | 1.5  | dB   |  |
|                                   |                                 | $Z_S = Z_{Sopt}, Z_L = Z_{Lopt}$                                |      |      |      |      |  |
| Associated Gain (1)               | Ga                              | $V_{CE} = 2 \text{ V, Ic} = 6 \text{ mA, f} = 5.2 \text{ GHz},$ | _    | 10.0 | -    | dB   |  |
|                                   |                                 | $Z_S = Z_{Sopt}, Z_L = Z_{Lopt}$                                |      |      |      |      |  |
| Associated Gain (2)               | Ga                              | Vce = 2 V, Ic = 6 mA, f = 5.8 GHz,                              | 7.5  | 9.5  | -    | dB   |  |
|                                   |                                 | $Z_S = Z_{Sopt}, Z_L = Z_{Lopt}$                                |      |      |      |      |  |
| Reverse Transfer Capacitance      | Cre Note 2                      | VcB = 2 V, IE = 0 mA, f = 1 MHz                                 | -    | 0.15 | 0.25 | pF   |  |
| Maximum Stable Power Gain         | MSG <sup>Note 3</sup>           | Vce = 3 V, Ic = 20 mA, f = 5.8 GHz                              | 11.0 | 14.0 | -    | dB   |  |
| Gain 1 dB Compression Output      | Po (1 dB)                       | Vce = 3 V, Ic (set) = 20 mA,                                    | _    | 13.0 | -    | dBm  |  |
| Power                             |                                 | f = 5.8 GHz, Zs = Zsopt, ZL = ZLopt                             |      |      |      |      |  |
| 3rd Order Intermodulation         | OIP3                            | Vce = 3 V, Ic (set) = 20 mA,                                    | _    | 18.0 | _    | dBm  |  |
| Distortion Output Intercept Point |                                 | f = 5.8 GHz, Zs = Zsopt, ZL = ZLopt                             |      |      |      |      |  |

**Notes 1.** Pulse measurement: PW  $\leq$  350  $\mu$ s, Duty Cycle  $\leq$  2%

2. Collector to base capacitance when the emitter grounded


**3.** MSG = 
$$\left| \frac{S_{21}}{S_{12}} \right|$$


# **hfe CLASSIFICATION**

| RANK      | FB         |  |  |
|-----------|------------|--|--|
| Marking   | T1K        |  |  |
| hre Value | 220 to 380 |  |  |

# PACKAGE DIMENSIONS (Units in mm)

#### FLAT LEAD 4-PIN THIN TYPE SUPER MINIMOLD (M05, 2012 PACKAGE





### **PIN CONNECTIONS**

- 1. Base
- 2. Emitter
- 3. Collector
- 4. Emitter

#### Life Support Applications

These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.