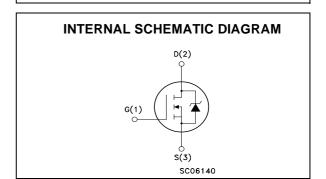


STB90NF03L


N-CHANNEL 30V - 0.0056Ω - 90A D²PAK LOW GATE CHARGE STripFET™ POWER MOSFET

TYPE	V _{DSS}	R _{DS(on)}	I _D
STB90NF03L	30 V	< 0.0065 Ω	90 A

- TYPICAL $R_{DS}(on) = 0.0056 \Omega$
- TYPICAL $Q_g = 35 \text{ nC} @ 5V$
- OPTIMAL R_{DS}(on) x Q_q TRADE-OFF
- CONDUCTION LOSSES REDUCED
- SWITCHING LOSSES REDUCED

DESCRIPTION

This application specific Power Mosfet is the third generation of STMicroelectronics unique "Single Feature SizeTM" strip-based process. The resulting transistor shows the best trade-off between on-resistance and gate charge. When used as high and low side in buck regulators, it gives the best performance in terms of both conduction and switching losses. This is extremely important for mother-boards where fast switching and high efficiency are of paramount importance.

APPLICATIONS

 SPECIFICALLY DESIGNED AND OPTIMISED FOR HIGH EFFICIENCY CPU CORE DC/DC CONVERTERS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	30	V
V _{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	30	V
V _{GS}	Gate- source Voltage	± 18	V
I _D	Drain Current (continuos) at T _C = 25°C	90	А
I _D	Drain Current (continuos) at T _C = 100°C	65	А
I _{DM} (●)	Drain Current (pulsed)	360	А
P _{TOT}	Total Dissipation at T _C = 25°C	150	W
	Derating Factor	0.73	W/°C
T _{stg}	Storage Temperature	– 55 to 175	°C
Tj	Max. Operating Junction Temperature	- 33 to 173	

(•) Pulse width limited by safe operating area

October 2001 1/8

STB90NF03L

THERMAL DATA

Rthj-case	Thermal Resistance Junction-case Max	1	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	62.5	°C/W
T _I	Maximum Lead Temperature For Soldering Purpose	300	°C

ELECTRICAL CHARACTERISTICS (TCASE = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0$	30			V
I _{DSS}	Zero Gate Voltage	V _{DS} = Max Rating			1	μA
	Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating, T_C = 125 °C$			10	μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 18 V			±100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1			V
R _{DS(on)}	Static Drain-source On	V _{GS} = 10V, I _D = 45 A		0.0056	0.0065	Ω
	Resistance	V _{GS} = 5V, I _D = 45 A		0.007	0.012	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max},$ $I_D = 45 \text{ A}$		40		S
Ciss	Input Capacitance	$V_{DS} = 25V, f = 1 \text{ MHz}, V_{GS} = 0$		2700		pF
Coss	Output Capacitance			860		pF
C _{rss}	Reverse Transfer Capacitance			170		pF

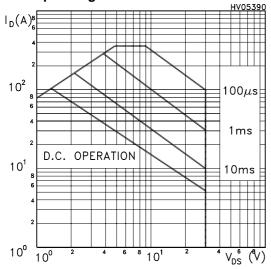
2/8

ELECTRICAL CHARACTERISTICS (CONTINUED)

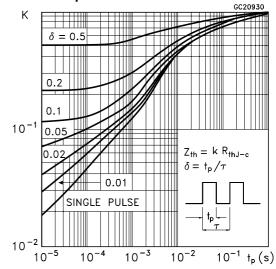
SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	V _{DD} = 15V, I _D = 45 A		30		ns
t _r	Rise Time	$R_G = 4.7\Omega V_{GS} = 4.5 V$ (see test circuit, Figure 3)		200		ns
Qg	Total Gate Charge	$V_{DD} = 24V, I_D = 90A, V_{GS} = 5V$		35	47	nC
Q_{gs}	Gate-Source Charge			10		nC
Q_{gd}	Gate-Drain Charge			18		nC

SWITCHING OFF

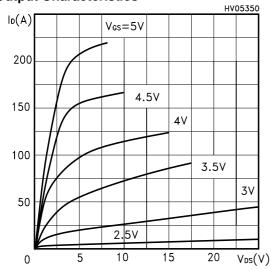

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)}	Turn-off-Delay Time	V_{DD} = 15V, I_{D} = 45 A, R_{G} = 4.7 Ω , V_{GS} = 4.5 V (see test circuit, Figure 3)		50		ns
t _f	Fall Time			105		ns

SOURCE DRAIN DIODE

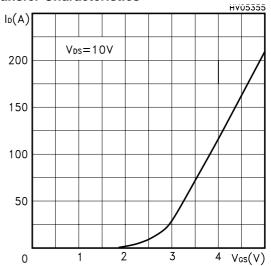

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current				90	Α
I _{SDM} (1)	Source-drain Current (pulsed)				360	Α
V _{SD} (2)	Forward On Voltage	I _{SD} = 90 A, V _{GS} = 0			1.3	V
t _{rr}	Reverse Recovery Time	I_{SD} = 90 A, di/dt = 100A/µs, V_{DD} = 15V, T_j = 150°C (see test circuit, Figure 5)		80		ns
Q _{rr}	Reverse Recovery Charge			90		nC
I _{RRM}	Reverse Recovery Current			2.5		Α

Note: 1. Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.2. Pulse width limited by safe operating area.

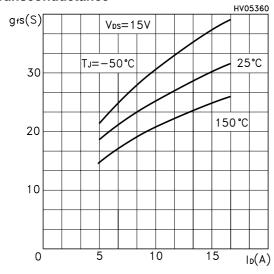
Safe Operating Area

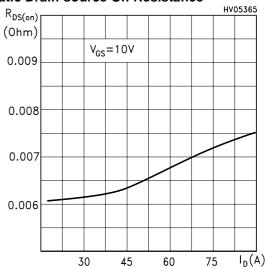


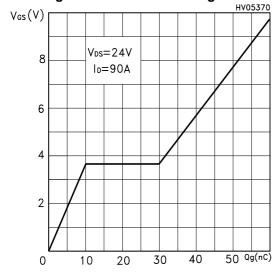
Thermal Impedence

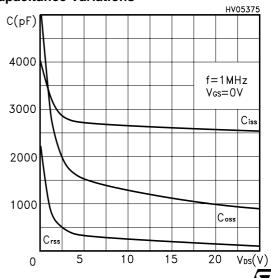


A7/.

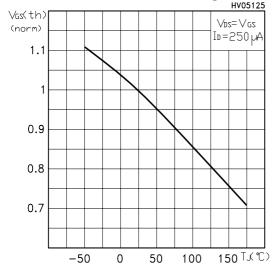

Output Characteristics


Transfer Characteristics

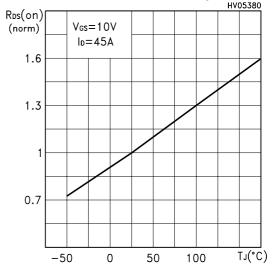

Transconductance


Static Drain-source On Resistance

Gate Charge vs Gate-source Voltage



Capacitance Variations



4/8

Normalized Gate Thereshold Voltage vs Temp.

Normalized On Resistance vs Temperature

Source-drain Diode Forward Characteristics

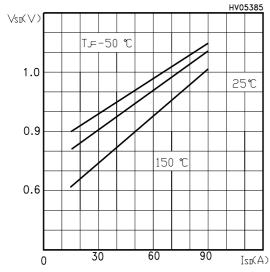
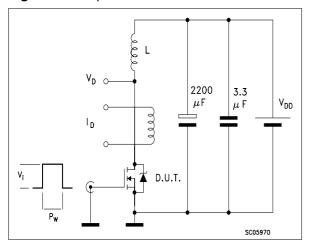



Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuit For Resistive Load

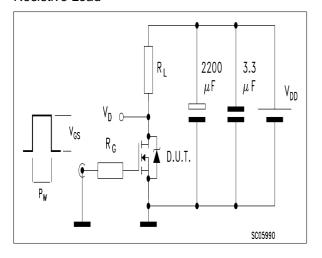


Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

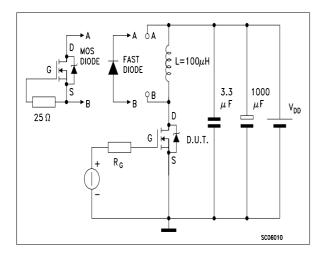
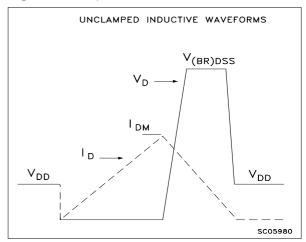
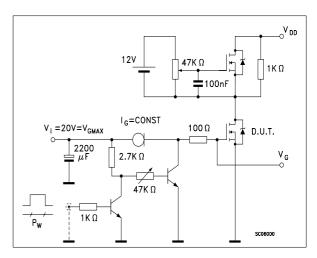
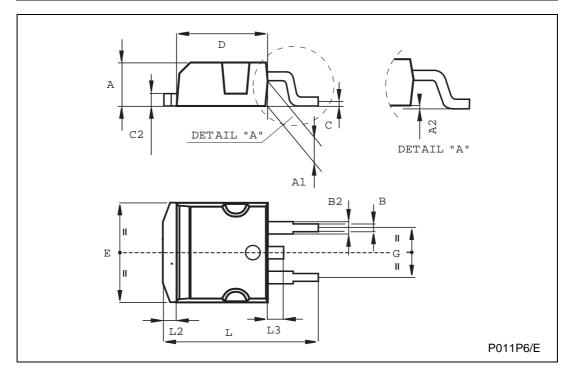


Fig. 2: Unclamped Inductive Waveform


Fig. 4: Gate Charge test Circuit

6/8

TO-263 (D²PAK) MECHANICAL DATA

DIM.		mm			inch	
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
В	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
С	0.45		0.6	0.017		0.023
C2	1.21		1.36	0.047		0.053
D	8.95		9.35	0.352		0.368
E	10		10.4	0.393		0.409
G	4.88		5.28	0.192		0.208
L	15		15.85	0.590		0.624
L2	1.27		1.4	0.050		0.055
L3	1.4		1.75	0.055		0.068

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2001 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com