

ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

(V⁺=6V, Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	.15	v
Output Peak Current	lop	1	A
Power Dissipation	Po	(DIP8) 700	
-		(SIP9) 700	mW
		(DMP8) 300	
Input Voltage Range	Vin	±0.4	. V
Operating Temperature Range	Topr	-40~+85	C
Storage Temperature Range	Tsig _	-40~+125	C

ELECTRICAL CHARACTERISTICS

(1) BTL Configuration (Test Circuit Fig. 1)

TYP. MAX. UNIT MIN. SYMBOL TEST CONDITION PARAMETER 15 v 1.8 Operating Voltage V+ 9 6 mΑ **Operating Current** lcc $R_L = \infty$ 10 50 mV $R_L = 8\Omega$ _ $\Delta V_{\rm O}$ Output Offset Voltage (Between the Outputs) 100 nΑ Input Bias Current lB THD=10%, f=1kHz Output Power Ро $V^{+}=9V, R_{L}=16\Omega$ (Note) 2.0 W 0.9 1.2 W $V^+=6V$, $R_L=8\Omega$ (Note) Ро 0.6 ____ W $V^{+}=4.5V, R_{L}=8\Omega$ Po 0.8 W Po $V^{+}=4.5V, R_{L}=4\Omega$ (Note) 200 300 mW $V^+=3V, R_L=4\Omega$ Ро $V^+=2V, R_L=4\Omega$ 80 mW Ро THD=1%, f=40kHz~15kHz w 1.0 $V^{+}=6V, R_{L}=8\Omega$ Ро $V^{+}=4.5V, R_{L}=4\Omega$ 0.6 w Ро ____ % 0.2 Total Harmonic Distortion THD $P_0 = 0.5W$; $R_L = 8\Omega$, f = I k H zdB 41 44 47 Ay f=1kHz Close Loop Voltage Gain Zin f=1kHz 100 kΩ Input Impedance _ 2 Equivalent Input Noise Voltage $V_{NI}I$ $R_s = 10k\Omega$, A Curve μV _ $R_s = 10k\Omega$, $B=22Hz \sim 22kHz$ 2.5 μV $V_{NI}2$ RR f = 100 Hz40 dB Ripple Rejection $A_v = -3dB$ from f=1kHz, $R_L = 8\Omega, P_0 = 1W$ fн 130 kHz Cutoff Frequency

(Note) At on PC Board

5

(2) Stereo Configuration (Test Circuit Fig. 2)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+		1.8	_	15	v
Output Voltage	Vo		_	2.7	. —	v
Operating Current	lcc	$R_{L} = \infty$	_ ·	6	9	mA
Input Bias Current	1 _B		—	100		nA
Output Power (Each Channel)		THD = 10%, f=1kHz				
	Po	$V^+=6V, R_L=4\Omega$ (Note)	0.5	0.65		w
	Po	$V^{+}=4.5V, R_{L}=4\Omega$	-	0.32		W
	Po	$V^{+}=3V, R_{L}=4\Omega$	_	120	·	mW
	Po	$V^{+}=2V, R_{L}=4\Omega$	-	30	-	mW
		THD=1%, $f=1kHz$				
	Po	$V^+=6V, R_L=4\Omega$		500	-	mW
	Po	$V^{+}=4.5V, R_{L}=4\Omega$	-	250	-	mW
Total Harmonic Distortion	THD	$P_0 = 0.4W$, $R_L = 4\Omega$, $f = 1kHz$		0.25		%
Voltage Gain	Av	f=1kHz	41	44	47	dB
Channel Balance	ΔA_V		_	—	±1	dB
Input Impedance	ZIN	ſ=1kHz	100.		-	kΩ
Equivalent Input Noise Voltage	V _{NI} 1	$R_S = 10k\Omega$, A Curve	—	2.5	-	μV
	V _{NI} 2	$R_s = 10k\Omega$, $B = 22Hz \sim 22kHz$	—	3		μV
Ripple Rejection	RR	$f = 100 Hz, C_X = 100 \mu F$	24	30	-	dB
Cutoff Frequency	քн	$A_V = -3dB$ from f=1kHz	-	200		kHz
-		$R_L = 8\Omega, P_O = 250 \text{mW}$				

(Note) At on PC Board

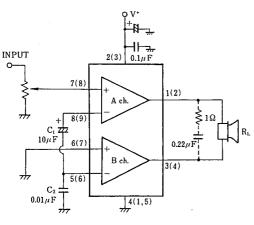
ELECTRICAL CHARACTERISTICS M-Type

(1) BTL Configuration (Test Circuit Fig. 1)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V*		1.8	_	15	v
Operating Current	Ice	$R_{1} = \infty$		6	9-	mA
Output Offset Voltage (Between the Outputs)	ΔV_{O}	$R_{L}=8\Omega$	-	10	50	mV
Input Bias Current	I _B			100	-	nA
Output Power		THD=10%, $f=1$ kHz				
	Po	$V^{+}=6V, R_{1}=16\Omega$ (Note)	-	0.8		W
	Po	$V^+=4V, R_L=8\Omega$ (Note)	350	460		mW
	Po	$V^{+}=3V, R_{L}=4\Omega$ (Note)	200	300		mW
	Po	$V^{\dagger} = 2V, R_{L} = 4\Omega$	· · · ·	80	-	mW
		$THD = 1\%$, $f = 40Hz \sim 15kHz$				
	Po	$V^+=4V, R_1=8\Omega$	<u> </u>	380	-	mW
Total Harmonic Distortion	THD	$V^+=4V, R_1=8\Omega, P_0=200mW, f=1kHz$	- i	0.2	1 —	% .
Close Loop Voltage Gain	Av	f=1kHz	41	44	47	dB
Input Impedance	ZIN	f=1kHz	100	i —	_	kΩ
Equivalent Input Noise Voltage	V _{NII}	$R_s = 10k\Omega$, A Curve	_	2		μV
· · · · · · · · · · · · · · · · · · ·	V _{NI2}	$R_s = 10k\Omega$, $B = 22Hz \sim 22kHz$	-	2.5		μV
Ripple Rejection	RR	f=100Hz	—	40	-	dB
Cutoff Frequency	fn	$A_{V} = -3 dB$ from f = 1kHz,		130	_	kHz
		$R_{L} = 16\Omega, P_{O} = 0.5W$			1	1

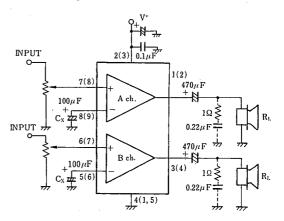
(Note) At on PC Board

(V⁺=6V, Ta=25°C)


NJM2073

(2) Stereo Configuration (Test Circuit Fig. 2)

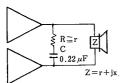
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V*		1.8		15	v
Output Voltage	V _o		-	2.7		v
Operating Current	lee	$R_{L} = \infty$	-	6	9	mA
Input Bias Current	I _B			100 .	- 1	nA
Output Power (Each Channel)		THD=10%, f=1kHz				
	Po	$V^{+}=6V, R_{1}=16\Omega$		240		mW
	Po	$V^+=5V, R_1=8\Omega$ (Note)	-	270		mW
	Ро	$V^{\mu}=4V, R_{\mu}=4\Omega$ (Note)	180	250	-	mW
	Po	$V^{\dagger}=3V, R_{1}=4\Omega$	-	120	—	mW
	Po	$V^+=2V, R_L=4\Omega$	-	30	—	mW
		THD = 1%, $f = 1kHz$				
	Po	$V^+=4V, R_1=4\Omega$	-	180	—	mW
Total Harmonic Distortion	THD	$V^{+}=4V, R_{1}=4\Omega, P_{O}=150mW, f=1kHz$	-	0.25	-	%
Voltage Gain	Av	f = 1 k Hz	41	-44	47	dB
Channel Balance	ΔA _V			-	±1	dB
Input Inpedance	ZIN	f=ikHz	100	— ·	-	kΩ
Equivalent Input Noise Voltage	V _{NII}	$R_{s} = 10k\Omega$, A Curve	-	2.5	· —	μV
	V _{NI2}	$R_s = 10k\Omega, B = 22Hz \sim 22kHz$		3	-	μV
Ripple Rejection	RR	$f = 100Hz, Cx = 100\mu F$	24	30	ļ —	dB
Cutoff Frequency	քո	$A_V = -3dB$ from f=1kHz	-	200	-	kHz
		$R_{\rm L} = 16\Omega, P_{\rm O} = 125 \text{mW}$			1	


(Note) At on PC Board

TYPICAL APPLICATION & TEST CIRCUIT

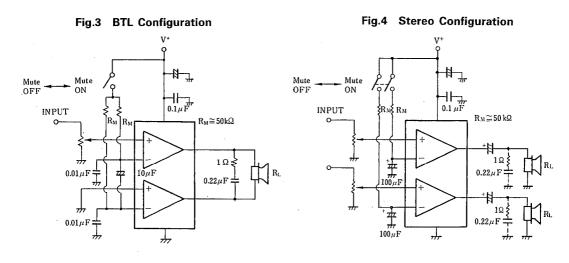
Fig.1 BTL Configuration

Fig.2 Stereo Configuration



note: pin No. to D,M-Type ()to S-Type

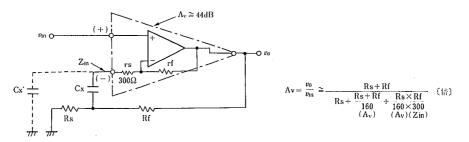
PARASITIC OSCILLATION PREVENTING CIRCUIT


Put $1\Omega + 0.22\mu$ F on parallel to load, if the load is speaker. Recommend putting 0.1μ F and more than 100μ F capacitors with good high frequency characteristics in to near ground and supply voltage pins.

In BTL operation of less than 2V supply voltage, parasitic oscillation may be occurred with $R = 1\Omega$. And so recommended R to be the same valve of pure resistance(r) when it is lower than 3V.

MUTING CIRCUIT

When Mute ON, OUTPUT level saturates to GND side.


VOLTAGE GAIN REDUCTION APPLICATION EXAMPLE

(1) Outline of way to further Reduction

NJM2073 by taking in assamption, as one of OP-AMP (Gain 44dB, minus input impedance about 300Ω), to feedback from output to minus input helps to get reduction of stablized voltage Gain. Fig.5 indicates the model example.

Here is the point to be noticed that, in order to get the appropriate output Bias Voltage, it is important to keep the minus input floating as DC condition (inserting C_X), and also that when extended too much reduction of Gain might cause Oscillation due to high band phase margin. The reduction of voltage gain is limitted at around 26 dB(20 times), and when oscillation, it in necessary to attach the oscillation atopper. Please examine the C_X value accordingly to the application reguirement.

Fig.5 Model of Voltage Gain Reduction

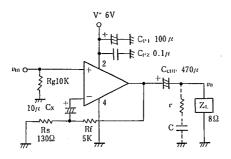
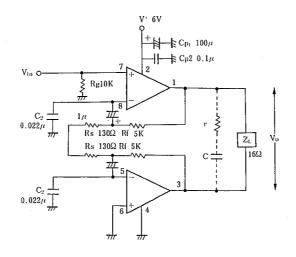

(2) The Application Example of Voltage Gain Reduction.(STEREO)

Fig.6 indicates the application example and Table 1 indicates the recommendable value of parts to be attached externally.

EXTERNAL PARTS	APPLICATION PURPOSE	RECOMMENDED VALUE	REMARKS
R _g	Plus input to be grounded	Under about	Catch the noise when much higher.
_	by fixed DC	100kΩ	
Rs	AV shall be decided with Rf	-	
Rſ	AV shall be decided with Rs	About 5kΩ	The co-temperature of AV becomes higher in case when Rs is higher
			resistance. The current from output pin to GND becomes higher, in
C			case when Rs is lower resistance. (The current sinks in vain.)
Cx	Minus input to be ground-	·	Low-band Cut off frequency (fL) is to be decided.
	ed by fixed DC		The rise time becomes longer in case that C _X is big.
CCUP	Output DC Decoupling	When $R_L = 8\Omega$,	fL shall be decided by C _{CUP} and Z _L .
		More than 220μ F	
CPI	Stabilization of V ⁺	More than about Ccup	Inserting near around V ⁺ pin and GND pin.
C _{P2}	Prevention of Oscillation	More than 0.1μ F	
r	"	About RL	<i>II</i>
С	"	0.22µF	To be examined by about the resisitor volume of the speaker load.

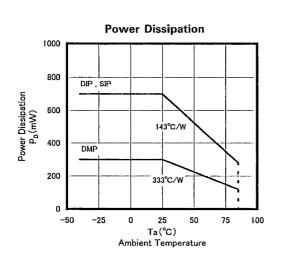
Table 1, Applicating purpose and Recommended Value of Externally parts to be attached.

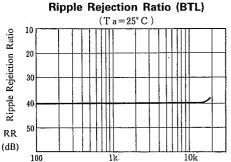
Fig.6 STEREO Application Example.



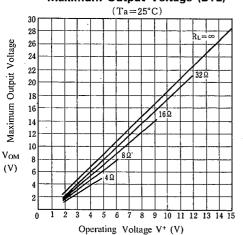
• Application for Voltage Gain Reduction (BTL)

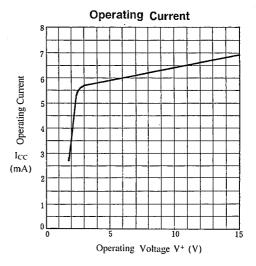
Fig.7 indicates the application example, Table 2 shows recommended value of externally attaching parts.

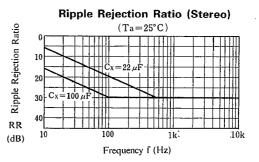

XTERNAL PARTS	APPLICATION PURPOSE	RECOMMENDED VALUE	REMARKS
Rg	DC condition ground of plus input	Below about $10k\Omega$	Making noise when higher.
Rs	AV shall be decided with Rr		
R _f	AV shall be decided with R_s	About 5kΩ	Temperature feature to be increased accordingly as in higher A value. When lower, to be trended of Oscillation.
Cı	Releasing minus input in to DC condition		Setting up low band Cut-off frequency (fL). More higher, the rise time become longer.
C ₂	Preventing Oscillation	About 0.02μ F	The more higher in ralue, the high band THD, due to phase slipplin to be deteriorated. When lower, to be trended of oscillation.
C _{P1}	Stability of V ⁺	more than about	Inserting near around at V ⁺ and the GND pin.
	Preventing Oscillation	100µF	
Cp2	Preventing Oscillation	mote than 0.1μ F	"
r	11	About R _L	To be examined at around pure resister Value of speaker load.
С	11	0.22µF	

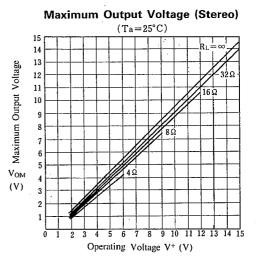

Fig.7 BTL Application

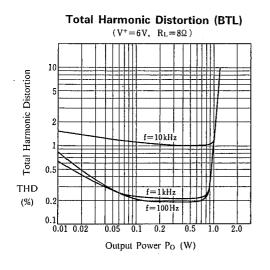
NJM2073


TYPICAL CHARACTERISTICS

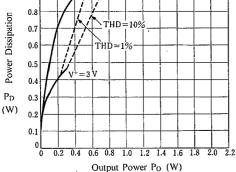


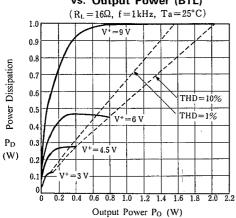


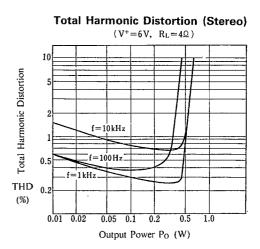

Frequency f (Hz)z)

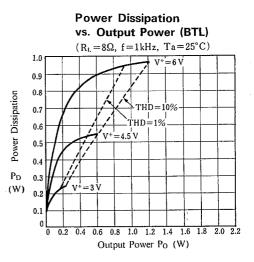


5

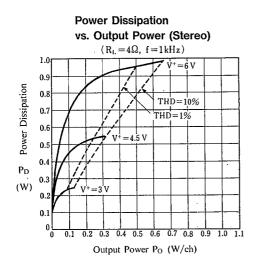

TYPICAL CHARACTERISTICS

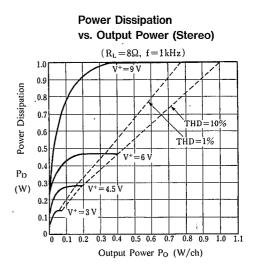



1.0


0.9

Power Dissipation vs. Output Power (BTL)

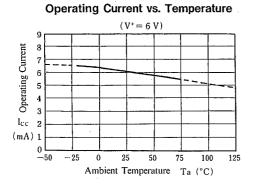


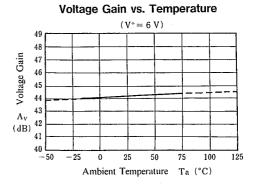


Power Dissipation vs. Output Power (BTL) $(R_1 = 32\Omega, f = 1 kHz)$ 1.0 0.9 ν ≕12 V 0.8 Power Dissipation 0.7 0.6 ≕ 9'\ THD=10% 0.5 THD=1% 0.4 $\mathbf{P}_{\mathbf{D}}$ 0.3 (W) =6V0.2 4.5 V 0.1 0 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 0.2 Û Output Power Po (W)

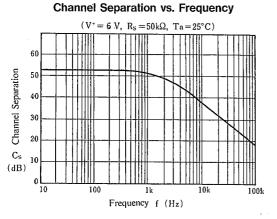
NJM2073

TYPICAL CHARACTERISTICS





Power Dissipation vs. Output Power (Stereo) $(R_{L}=16\Omega, f=1kHz)$ 1.0 0.9 0.8 Power Dissipation 0.7 $v^{+}=9V$ 0.6 0.5 THD = 10% 0.4 THD=1% PD 0.3 . V⁺≈6V (W) 0.2 =4.5 V ν 0.3 =3 V 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 0 Output Power Po (W/ch)


Power Dissipation vs. Output Power (Stereo) $(R_{L}=32\Omega, f=1kHz)$ 1.0 0.9 V+=15 V 0.8 Power Dissipation 0.7 = 12 V0.6 0.5 THD=10% 0.4 THD=1% Pp 0.3 ٧ __9 ν (W) 0.2 r --- 6 0.1 ΰ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 0 Output Power PD (W/ch)

TYPICAL CHARACTERISTICS

. . . . _

5

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

- Now Janan Padia Ca Std -