SYSTEM RESET IC

■ GENERAL DESCRIPTION

NJM2103 is supply voltage supervisory IC to detect the abnormal conditions, such as shut down of all supply voltages at once, or sudden voltage down and then generate the reset signal. It supervises both 5V supply voltage and the voltage optionally set up.

FEATURES

Precise Detection of Supply Voltage Down $(V_{SA}=4.2V\pm2.5\%)$ $(V_{SB}=1.22V\pm1.5\%)$ Possible Detection of Optional Voltage Down

Possible Detection of Optional Over-loading Low Operating Current $(I_{CC} \le 560 \mu \text{A @V}_{SB} = 5\text{V})$

Reference Voltage can be taken out.

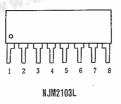
Low Reset Validated Voltage

Voltage Detection with Hystersis Feature

Package Outline

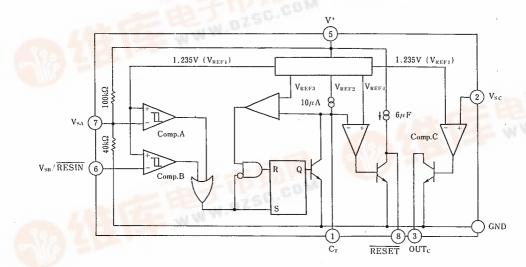
Bipolar Technology

■ PACKAGE OUTLINE



NJM2103M

PIN CONFIGURATION



(V*=0.8V Typ.)

DIP8, DMP8, SIP8

PIN FUNCTION 1. C_T 2. V_{sc} 3. OUT_c 4. GND 5. V⁺ 6. V_{SB}/RESIN 7. V_{SA} 8. RESET

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	20	V
Power Dissipation	P _D	(DIP8) 500	mW
		(DM8) 300	mW
		(SIP8) 800	mW
Input Voltage A	Vsa	V ⁺ +0.3(<20)	V
Input Voltage B	V _{SB}	20	V
Input Voltage C	Vsc	20	V
Operating Temperature Range	Topr	-40~+85	°C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

• DC CHARACTERISTICS

 $(V^{+}=5.0V, V_{SB}=0V, V_{SC}=0V, Ta=25^{\circ}C)$

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current (1)	Icci	$V_{SB}=5V$	_	380	560	μΑ
Operating Current (2)	I _{CC2}			460	700	μΑ
V _{SA} Detecting Voltage (1)	V _{SAL}	V+ fall time V _{SB} = V+	4.10	4.20	4.30	٧
V _{SA} Detecting Voltage (2)	Vsah	V ⁺ rise time V _{SB} =V ⁺	4.20	4.30	4.40	٧
V _{SA} Hysterisis Width	VHRSA		50	100	150	mV
V _{SB} Detecting Voltage	V _{SBL}	V _{SB} fall time	1.202	1.220	1.238	V
V _{SB} Detecting Supply Voltage Fluctuation	ΔV _{SBL}	V+=3.5~18V	_	3	10	mV
V _{SB} Hysterisis Width	VHRSB		14	28	42	mV
V _{SB} Input Current (1)	IntiB	$V_{SB}=5V$	—	0	250	nΑ
V _{SB} Input Current (2)	1 _{ILB}			20	250	nΑ
High Level RESET Output Voltage	V _{OHR}	$I_{RESET} = -5\mu A$, $V_{SB} = 5V$	4.5	4.9	_	μ٧
RESET Output Saturating Voltage(1)	Volri	I _{RESET} =2mA		0.20	0.40	ν
RESET Output Saturating Voltage(2)	V _{OLR2}	I _{RESET} =10mA		0.30	0.50	\ \ \ .
RESET Output Sink Current	IRESET	$V_{OLR}=1.0V$	20	80		mΑ
C _T Charge Current	ICT	$V_{SB}=5V$, $VCT=0.5V$	6.0	9.5	13.0	μA
Vsc Input Current (1)	Inc	$V_{SC}=5V$	-	0	500	nΑ
V _{SC} Input Current (2)	luc		_	50	500	nΑ
V _{SC} Detecting Voltage	V _{SC}		1.215	1.235	1.255	V
V _{SC} Detecting Supply Voltage Fluctuation	ΔV _{SC}	V+=3.5~13.5V	_	3	10	mV
OUT _C Output Leak Current	I _{OHC}	V _{OHC} =13.5V		0	l t	μA
OUT _C Output Saturation Voltage	Volc	$I_{OUT}=4mA, V_{SC}=5V$	-	0.10	0.40	٧
OUT _C Output Sink Current RESET Guarantee Minimum Supply Voltage	I _{OUTC}	· V _{OLC} =1.0V, V _{SC} =5V V _{OLR} =0.4V, I _{RESET} =200μA	6	20 0.8	1.2	mA V

• AC CHARACTERISTICS

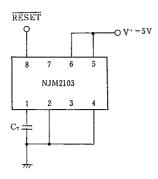
 $(V^{+}=5.0V V_{SB}=5.0V, V_{SC}=0V, CT=0.01 \mu F, Ta=25^{\circ}C)$

ITEM	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
V _{SA} Input Pulse Width	tpiA			3.0	_	μs
VsB Input Pulse Width	tpiB		-	1.5		μs
RESET Output Pulse Width	tpo	V _{SB} =V ⁺	-	1.5	-	ms
RESET Rise Time	t _r	$V_{SB} = V^+, R_L = 2.2k\Omega, C_1 = 100pF$	-	1.0		μs
RESET Fall Time	tf	$V_{SB} = V^+, R_L = 2.2k\Omega, C_L = 100pF$	_	0.1		μs
Output Delay Time	tpD	V _{SB} fall time		2	-	μs
Output, Delay Time	tphL	V_{SC} rise time, $R_L = 2.2k\Omega$, $C_L = 100pF$	-	0.5	-	μs
Output Delay Time	tplii	V_{SC} fall time, $R_L = 2.2k\Omega$, $C_L = 100pF$	-	1.0	_	μs

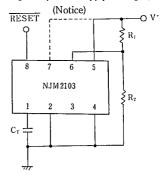
■ TERMINAL FUNCTION

PIN NO.	SYMBOL	FUNCTION	INSIDE EQUIVALENT CIRCUIT
1	Ст	Pin Connection to Capacitor, Set the reset holding time,	V _{NEV} O GND
2	Vsc	Comparator Input	V* V V V V V V V V V V V V V V V V V V
3	OUTc	Open Collector Output of Comparator C.	GND O

6


■ TERMINAL FUNCTION

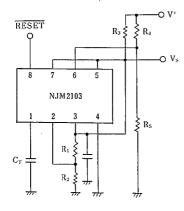
PIN NO.	SYMBOL	FUNCTION	INSIDE EQUIVALENT CIRCUIT
4	GND	Ground	
5	V-1	Operating Voltage	
6	Vstt/RESIN	Comparator B Input	6 VREF
7	VsA	Comparator A Input	7 V _{REF}
8	RESET	Reset Output Internalizing pull up resistor	8 8 o GND


6

■ APPLICATION CIRCUIT

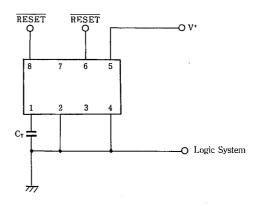
1) 5V Supply Voltage Monitor

2) Monitoring of Optional Supply Voltage ($V^+ \le 13.5V$)

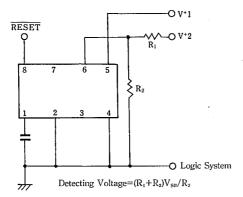


Detecting Voltage $\Rightarrow (1 + \frac{R_1}{R_2}) \times V_{SB}$

Notice)


If it were that V+ indicates under 4.50V, Connect 7 pin to V+

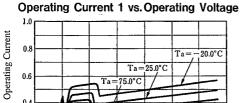
3) Monitoring of Optional Supply Voltage (V+>13.5V)

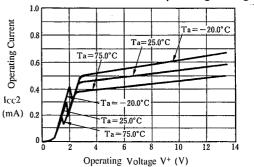

$$\begin{split} \text{Detecting Voltage} & = (1 + \frac{R_J}{R_5}) \times V_{SB} \\ \text{Constant Voltage Output } & V_S = (1 + \frac{R_J}{R_2}) \times V_{SC} \\ \hline & \overline{\text{RESET Output}} = V_S & \text{(High Level)} \\ & \text{(Low Level)} \end{split}$$

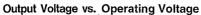
4) Compulsry Reset



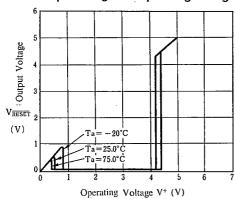
Input Reset signal TTL level to V_{SB}-terminal


5) 5V,V_{CC}<12V Supply Voltage Monttor

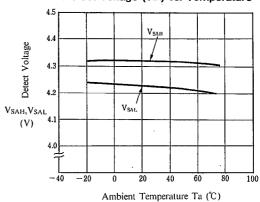

6) Non-Inverting Reset

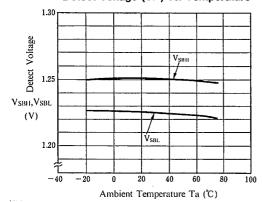


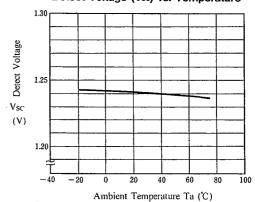
TYPICAL CHARACTERISTICS

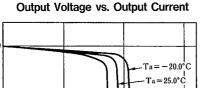


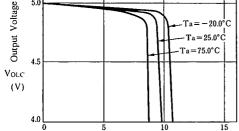
Operating Current 2 vs. Operating Voltage

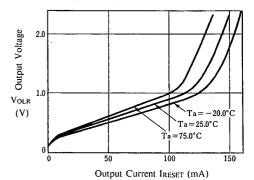


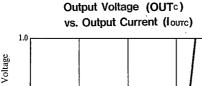

Operating Voltage V+ (V)

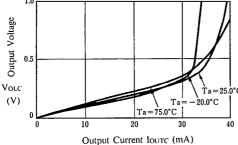

Detect Voltage (VsA) vs. Temperature

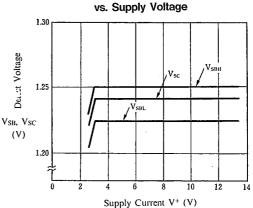

Detect Voltage (VsA) vs. Temperature

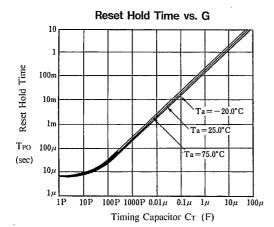

Detect Voltage (Vsc) vs. Temperature

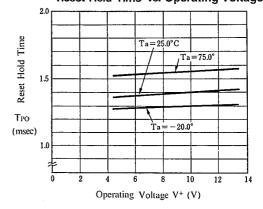

■ TYPICAL CHARACTERISTICS




Output Current Iom (µA)


Output Voltage vs. Output Current





Detect Voltage (VsB, Vsc)

Reset Hold Time vs. Operating Voltage

NJM2103

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.