MONORAL MIC AMP. for VIDEO CAMERA

■ GENERAL DESCRIPTION

NJM2110 is a monaural microphone amplifier for video camera. It can operate from 2.7V.

The performance is low Operating current and small package, therefore it is easy to design the downsizing and low consumption.

■ FEATURES

Operating Voltage

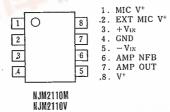
2.7V~5.3V

Low Operating Current

(V⁺=5V:3.5mA Typ.) (V⁺=3.3V:1.1mA Typ.)

Short Circuit Protection for External MIC.

Package Outline


DMP8, SSOP8

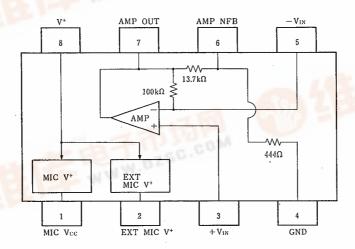
· Bipolar Technology

■ APPLICATION

Video Camera

■ PIN CONFIGURATION

■ PACKAGE OUTLINE

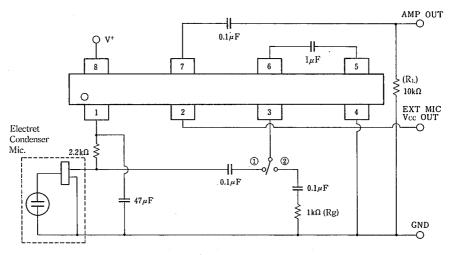


NJM2110M

NJM2110V

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS


PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V+	7.0	v	
Power Dissipation	P _D	(SSOP8) 250 (DMP8) 300	mW	
Operating Temperature Range	Topr	-20~+75	°C	
Storage Temperature Range	Tstg	-40~+125		

■ ELECTRICAL CHARACTERISTICS

(V⁺=5V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT.
Operating Current 1	Icc 1			3.5	4.5	mA
Operating Current 2	Icc 2	V+= 3.3V		1.1	2.0	mA
Transfer Gain	Gv	f= IkHz	27	28	29	dB
Total Harmonic Distortion	THD	$f=1kHz$, $Vo=300mV_{rms}$, $R_L=10k\Omega$	_	0.05	0.2	%
Maximum Output Voltage	Vom	$f = 1 \text{ kHz}, V^+ = 2.7 \text{ V}, THD = 1\%, R_L = 10 \text{ k}\Omega$	2.0	2.5	-	V _{P-P}
Output Noise Voltage	Vno	$R_g = Ik\Omega$, C=0.1 μ F, A-Weight	—	30	42	μVrms
Input Resistance Gain	Zin	f=1kHz		110	i —	kΩ
Output Resistance	Zo	f=1kHz		10	—	Ω
MIC Output Supply Voltage 1	MICo 1		2.0	2.35	2.7	V
MIC Output Supply Voltage 2	MICo 2	V+=2.7V	2.0	2.25	2.5	٧
External Output Supply Voltage	EXTout	Io=25mA	4.0	-	l —	V
Output Short Circuit Current	Ios	EXT ₀ =0V			30	mA

■ TEST CIRCUIT

****SW**2:Output Noise Voltage TEST

NJM2110

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.