

WWW.DZSC.COM

Low Saturation Output Voltage

查询NJM2112供应商

- Package Outline ٠
- Bipolar Technology
- $(\pm 2.0V_{p-p} @V^+=\pm 2.5V)$ DIP14, DMP14, SSOP14

PIN FUNCTION 1. A OUTPUT

2. A -INPUT 3. A +INPUT

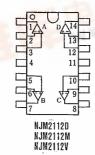
5. B +INPUT

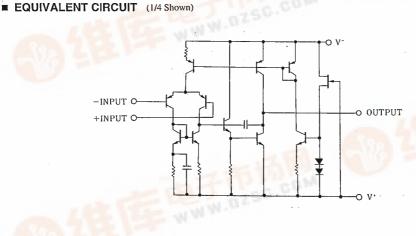
6. B -- INPUT

7. B OUTPUT

4. V+

8. C OUTPUT 9. C -INPUT


10. C +INPUT


13. D -INPUT

14. D OUTPUT

11. V-12. D +INPUT NJM2112V

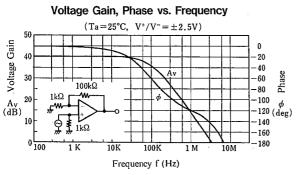
PIN CONFIGURATION

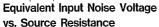
ABSOLUTE MAXIMUM RATINGS

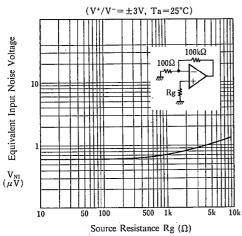
(Ta=25℃)

 $(V^{+}/V^{-}=\pm 2.5V, Ta = 25^{\circ}C)$

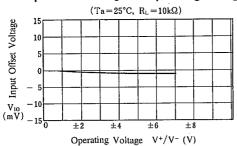
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*/V-	±7.0	v
Differential Input Voltage	Vid	±14	V
	Po	(DIP14) 500	mW
Power Dissipation		(DIM14) 300	mW
		(SSOP14) 300	mW
Operating Temperature Range	Topr	-40~+85	C
Storage Temperature Range	Tstg	-40~+125	Ĉ

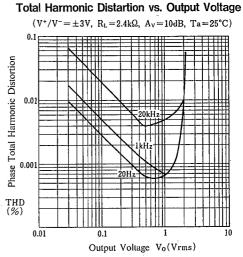

ELECTRICAL CHARACTERISTICS

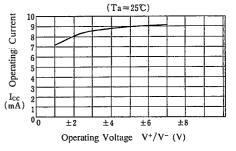

SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Vio	$R_{S} \leq 10k\Omega$	_	1	6	mV
IB			100	300	nA
Av	$R_L \ge 10 k\Omega$	60	80		dB
Vом	$R_L \ge 2.5 k\Omega$	±2	±2.2	—	v
VICM		±1.5			v
CMR		60	74		dB
SVR		60	80		dB
Icc	$V_{IN}=0, R_L=\infty$	_	8	11	mA
SR	$A_U = I, V_{IN} = \pm I V$	— '	3.2	—	V/µs
GB	f=10kHz		9	-	MHz
	VIO IB Av VOM VICM CMR SVR ICC SR	$ \begin{array}{ c c c c c } \hline V_{10} & R_{S} \leq 10 k \Omega \\ \hline I_{B} & \\ A_{V} & R_{L} \geq 10 k \Omega \\ \hline V_{0M} & R_{L} \geq 2.5 k \Omega \\ \hline V_{1CM} & \\ CMR \\ SVR \\ \hline I_{CC} & V_{1N} = O, R_{L} = \infty \\ \hline SR & A_{U} = 1, V_{1N} = \pm 1 V \end{array} $	$ \begin{array}{ c c c c c c } \hline V_{10} & R_{S} \leq 10 k \Omega & & - & \\ \hline I_{B} & & & - & \\ Av & R_{L} \geq 10 k \Omega & & 60 \\ \hline V_{0M} & R_{L} \geq 2.5 k \Omega & & \pm 2 \\ \hline V_{1CM} & & & \pm 1.5 \\ \hline CMR & & & 60 \\ SVR & & & 60 \\ \hline I_{CC} & V_{1N} = 0, R_{L} = \infty & & - \\ SR & A_{U} = 1, V_{1N} = \pm 1 V & - & - \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c } \hline V_{10} & R_{S} \leq 10 k \Omega & & - & 1 & 6 \\ \hline I_{B} & & & - & 100 & 300 \\ Av & R_{L} \geq 10 k \Omega & & 60 & 80 & - \\ V_{0M} & R_{L} \geq 2.5 k \Omega & & \pm 2 & \pm 2.2 & - \\ V_{1CM} & & & \pm 1.5 & - & - \\ CMR & & & 60 & 74 & - \\ SVR & & & 60 & 80 & - \\ I_{CC} & V_{1N} = 0, R_{L} = \infty & & - & 8 & 11 \\ SR & A_{U} = 1, V_{1N} = \pm 1 V & - & 3.2 & - \\ \hline \end{array} $

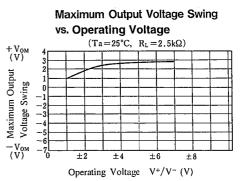

(note 1)Applied circuit voltage gain is desired to be operated within the range of 3 dB to 30 dB.

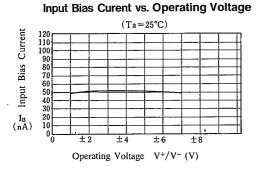
(note 2)Special care being required for input common mode voltage range and the oscillation due to the capacitive load when operating follower.

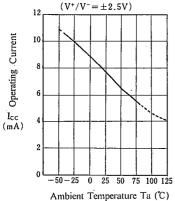

TYPICAL CHARACTERISTICS





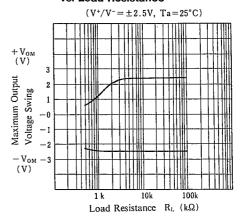

Input Offset Voltage vs. Operating Voltage

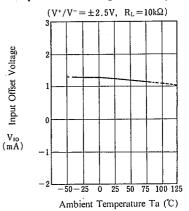

Operating Current vs. Operating Voltage

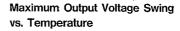


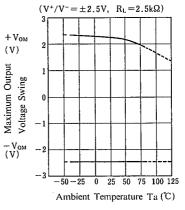
NJM2112

TYPICAL CHARACTERISTICS






	I	nput	Bias	Cu	rren	t vs.	Ten	npei	ature
	$(V^{+}/V^{-} = \pm 2.5V)$								
ent	50						1	T	
Input Bias Current	40		\neg				<u> </u>	┝╴	
Bias	30							-	
Input	.20								
	10								
IB (nA)	0						ļ		
	0	-25	0	2	55	i0 7	75 1	00	125
Ambient Temperature Ta (°C)									


Maximum Output Voltage Swing vs. Load Resistance

Input Offset Voltage vs. Temperature

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

- Now Janan Padia Ca Std -