HIGH PERFORMANCE LOW-NOISE DUAL OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

NJM 2114 is a high performance dual low noise operational amplifier which could be replaced in application with NJM5532. Comparing to NJM5532, it has superior specifications on Slew Rate, Bandwidth and Offset Voltage. Furthermore lower noise and distortion are achieved, it is applicable for Hi-Fi audio equipments.

FEATURES

Operating Voltage

 $(\pm 3.0 \text{V} \sim \pm 22.0 \text{V})$

High Slew Rate

 $(15V/ \mu s typ.)$

Wide Unity Gain Bandwidth Low Noise Voltage

(15MHz typ.) $(0.9 \mu \text{Vnms typ.})$

High Output Current

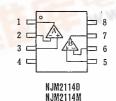
(60mA typ.)

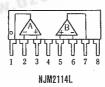
Package Outline

DIP8, DMP8, SIP8

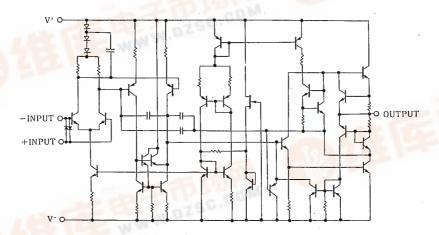
Bipolar Technology

■ PACKAGE OUTLINE




NJM2114D

NJM2114L


PIN CONFIGURATION

A OUTPUT -INPUT +INPUT 5. B +INPUT -INPUT 7. B OUTPUT

■ EQUIVALENT CIRCUIT

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*/V-	±22	· V
Input Voltage	. V _{IC}	V+/V-	V
Differential Input Voltage	V _{ID}	±0.5	V
Power Dissipation	PD	(DIP8) 800	mW
	ł	(SIP8) 800	. mW
		(DMP8) 600(note)	mW
Operating Temperature Range	Торг	-20~+75	°C
Storage Temperature Range	T _{stg}	-40~+125	°C

(note 2) At on PC board

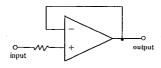
■ ELECTRICAL CHARACTERISTICS

 $(V^+/V^- = \pm 15V, Ta = 25^{\circ}C)$

Direct Current Characteristics

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	Icc			9	16	mA
Input Offset Voltage	Vio		_	0.2	3	mV
Input Offset Current	I _{IO}		_	0.01	0.3	μΑ
Input Bias Current	IB			0.5	1.8	μA
Maximum Peak To Peak Output Voltage	V _{OM}		±12	±13		v
Swing				ĺ		
Common Mode Rejection Ratio	CMR	VICM = 12V	70	100		dB
Supply Voltage Rejection Ratio	SVR	$V^+/V^-=\pm 22 \rightarrow \pm 11V$	80	100		dB
Large Swing Voltage Gain 1	Avı	RL≥2K. V _O =±10V	1 88	110		dB
Large Swing Voltage Gain 2	A _{V2}	RL≥600. V _O =±10V	83	104	<u> </u>	dB
Maximum Output Voltage Swing 1	VoH	RL≧600	±12	14/-13	-	v i
Maximum Output Voltage Swing 2	V _{OH2}	RL≥600. V+/V-=±18V		17/-16		v
Input Resistance	RIN		_	100	_	ΚΩ
Maximum Output Current Swing	IOH	·		60		mA
		.'	l	1		

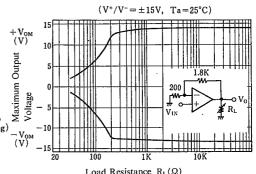
■ ELECTRICAL CHARACTERISTICS


Alternating Current Characteristics

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Slew Rate	SR	G _V = 20dB. RL=2K		15	_	V/μS
Gain bandwidth product	GB		_	13	_	MHz
Equivalent input noise voltage	V _{NI}	20Hz~20kHz	_	0.9		uVrms
Equivalent input noise voltage	V _{NI}	fo=30Hz	—	5.5	—	nV/ √H:
Equivalent input noise voltage	V _{NI}	fo=1kHz	_	3.3	—	nV/ √H:
Equivalent input noise current	I _{NI}	fo=30Hz	-	1.5	l —	pA√√H
Equivalent input noise current	INI	fo=1kHz	_	0.4	—	pA/√H
Total Harmonic Distotion	THD	$f = 1kHz, V_0 = 5V$	_	0.0005	l —	%

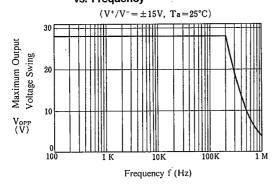
■ NOTE

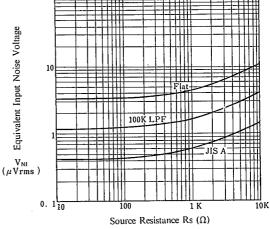
In the application as a voltage follower, there might be the case the inputs are damaged especially the moment the supply voltage is switched on.


That's why we recommend you to put the current limiting resistor at the input pin.

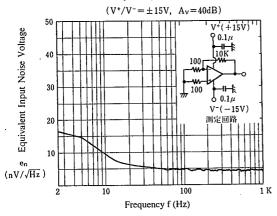
■ TYPICAL CHARACTERISTICS

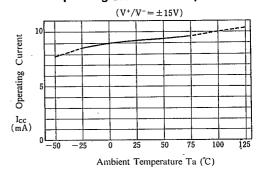
Voltage Gain, Phase vs. Frequency $(V^+/V^- = \pm 15V, R_L = 2K\Omega, 40dBAmp, Ta = 25^{\circ}C)$ By Voltage Gain 30 Frequency f (Hz)


Maximum Output Voltage vs. Load Resistance

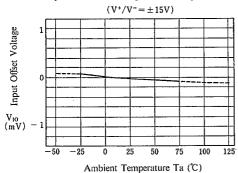

Load Resistance R_L(Ω)

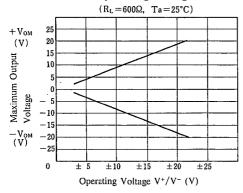
Equivalent Input Noise Voltage


Maximum Output Voltage Swing vs. Frequency

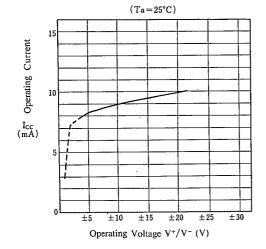

vs. Source Resistance $(V^+/V^- = \pm 15V, Ta = 25^{\circ}C)$ Equivalent Input Noise Voltage

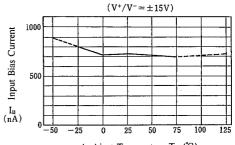
Equivalent Input Noise Voltage vs. Frequency


Operating Current vs. Temperature

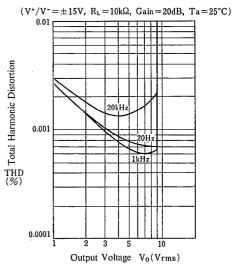

4

■ TYPICAL CHARACTERISTICS


Input Offset Voltage vs. Temperature


Maximum Output Voltage vs. Operating Voltage

Operating Current vs. Operating Voltage



Input Bias Current vs. Temperature

Ambient Temperature Ta (°C)

Total Harmonic distortion vs. Output Voltage

NJM2114

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.