DUAL SINGLE-SUPPLY OPERATIONAL AMPLIFIER

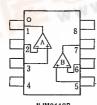
■ GENERAL DESCRIPTION

NJM 2119 is a ultra-low input offset voltage and bias current, low drift and single supply dual operational amplifier. NJM2119 is suitable for a high accurated instrumental amplifier and sensor amplifier.

FEATURES

- Single Supply
- Operating Voltage
- Low Input Offset Voltage
- Low Input Bias Current
- Low Input Offset Voltage Drift
- Package Outline
- (+4V~+36V)
- (90 μV Typ.)
- (18nA Typ.)
- (4.0 *μ* V/°C Typ.) DIP8, DMP8
- Bipolar Technology

PIN CONFIGURATION


■ PACKAGE OUTLINE

NJM2119D

NJM2119M

NJM2119D NJM2119M

PIN FUNCTION

- A OUTPUT
- -INPUT
- +INPUT
- +INPUT
- -INPUT
- B OUTPUT

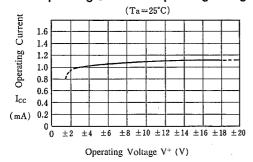
■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

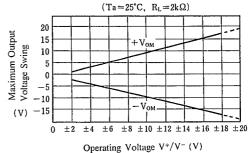
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+(V+/V-)	36(±18)	V
Differential Input Voltage	V _{ID}	-0.3~+36	V
Input Voltage	V _{IC}	+36 (note)	V
Power Dissipation	PD	(DIP8) 700	mW
		(DMP8) 300	mW
Operating Temperature Range	Topr	-30~+85	°C
Storage Temperature Range	Tstg	-40~+125	°C

(note) For supply voltage less than $\pm 18 \text{V}$, the absolute maximum input voltage is equal to the supply voltage.

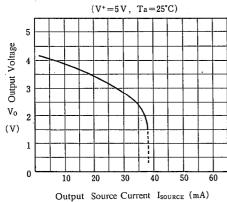
■ ELECTRICAL CHARACTERISTICS

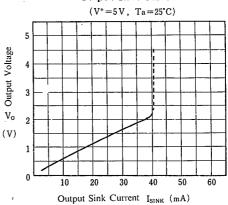

 $(V^{+}=5.0V, Ta=25\pm2^{\circ}C)$

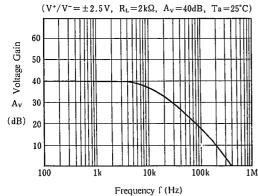
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT.
Input Offset Voltage	V _{IO}	$R_S \leq 50\Omega$	_	90	450	μV
V _{IO} Drift	ΔV10/ΔΤ	Ta=-30~+85°C	_	4.0	l —	μV/°C
Input Offset Current	lio			0.3	7.0	пA
Input Bias Current	IB	1	-	18	50	nA
Operating Current	Icc	$R_L = \infty$	_	1.0	1.5	mA
Input Common Mode Voltage Range	VICM	Ĭ,	0~3.5	_	_	v
Common Mode Rejection Ratio	CMR		85	100	_	dB
Supply Voltage Rejection Ratio	SVR		85	100	_	dB
Large Signal Voltage Gain	Av	$R_L = 600\Omega$	90	105	<u> </u>	dB
Maximum Output Voltage Swing 1	+V _{OM1}	$R_L = 600\Omega$	3.4	4.0		v
Maximum Output Voltage Swing 1	-V _{OM1}	$R_L = 600\Omega$	-	5.0	10.0	mV
Maximum Output Voltage Swing 2	-V _{OM2}	I _{SINK} =ImA	_	220	350	mV
Slew Rate	SR	$A_V = I$	_	0.3	_	V/μs
Gain Bandwidth Product	GB		_	1.0	_	MHz

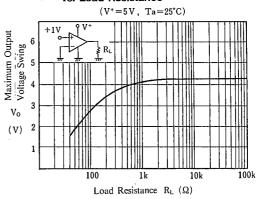

4

TYPICAL CHARACTERISTICS

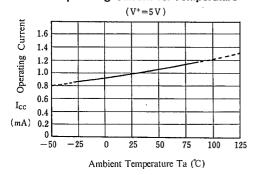

Operating Current vs. Operating Voltage


Maximum Output Voltage Swing vs. Operating Voltage

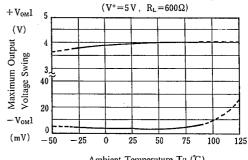

Output Source Current


Output Sink Current

Voltage Gain vs. Frequency

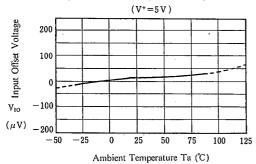


Maximum Output Voltage Swing vs. Load Resistance

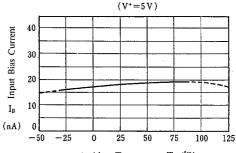


■ TYPICAL CHARACTERISTICS

Operating Current vs. Temperature



Maximum Output Voltage Swing vs. Temperature



Ambient Temperature Ta (°C)

Input Offset Voltage vs. Temperature

Input BiasCurrent vs. Temperature

Ambient Temperature Ta (°C)

NJM2119

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.