

TFT COLOR LCD MODULE NL6448AC33-18A

26 cm (10.4 inches), 640×480 pixels, 262144 colors, Luminance adjustable, Non anti-glare panel

DESCRIPTION

NL6448AC33-18A is a TFT (thin film transistor) active matrix color liquid crystal display (LCD) comprising amorphous silicon TFT attached to each signal electrode, a driving circuit and a backlight. NL6448AC33-18A has a built-in backlight. Backlight includes long life lamps, which are replaceable.

The 26 cm diagonal display area contains 640×480 pixels and can display 262144 colors simultaneously. NL6448AC33-18A is suitable for factory automation use, because luminance is higher, and viewing direction is selectable by switching display scan direction.

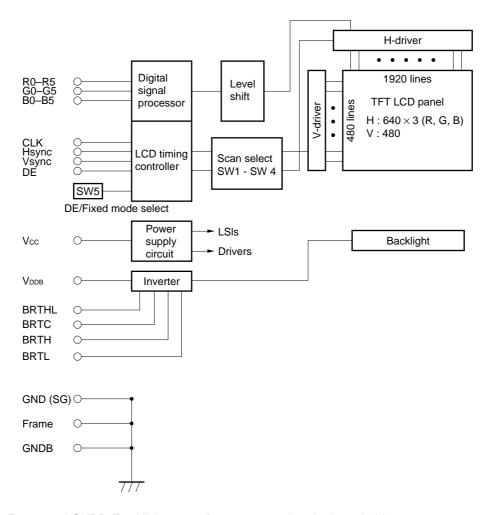
FEATURES

- · Reverse function (user set up)
- · 6-bit digital RGB signals
- 3.3 V operation (5.0 V available)
- Data enable function (DE/Fixed mode select: user set up)
- Smooth polarizer surface (No antiglare treatment)
- Incorporated edge type backlight (Two lamps, with inverter, bright/dark selectable)
- Backlight tube replaceable (refer to the tube replace manual for NL6448AC33-18A)

APPLICATIONS

- Industrial PC
- Display terminals for control system
- · Monitors for process controller

The information in this document is subject to change without notice. Please confirm with the delivery specification before starting to design the system.


STRUCTURE AND FUNCTIONS

A TFT color LCD module comprises a TFT LCD panel, LSIs for driving liquid crystal, and the backlight. The TFT LCD panel is composed of a TFT array glass substrate superimposed on a color filter glass substrate with liquid crystal filled in the narrow gap between two substrates. The backlight apparatus is located on the backside of the LCD panel.

RGB (red, green, blue) data signals from a source system is modulated into a form suitable for active matrix addressing by the onboard signal processor and sent to the driver LSIs which in turn addresses the individual TFT cells.

Acting as an electro-optical switch, each TFT cell regulates light transmission from the backlight assembly when activated by the data source. By regulating the amount of light passing through the array of red, green, and blue dots, color images are created with clarity.

BLOCK DIAGRAM

Note 1. Frame and GNDB (Backlight ground) are contacted at the lamp holder.

2

OUTLINE OF CHARACTERISTICS (at room temperature)

Display area 211.2 (H) \times 158.4 (V) mm Drive system a-Si TFT active matrix

 $\begin{array}{lll} \mbox{Display colors} & 262144 \ \mbox{colors} \\ \mbox{Number of pixels} & 640 \times 480 \ \mbox{pixels} \\ \mbox{Pixel arrangement} & \mbox{RGB vertical stripe} \\ \mbox{Pixel pitch} & 0.33 \ \mbox{(H)} \times 0.33 \ \mbox{(V)} \ \mbox{mm} \end{array}$

Weight 470 g (typ.) + 15 g (typ., inverter)

Contrast ratio 150:1 (typ.)

Viewing angle (more than the contrast ratio of 10:1)

Horizontal: 45° (typ. left side, right side)

Vertical : 30° (typ. up side), 20° (typ. down side)

Designed viewing direction • Wider viewing angle with contrast ratio

: up side (12 o'clock, normal scan)
: down side (6 o'clock, reverse scan)
• Wider viewing angle without image reversal
: down side (6 o'clock, normal scan)
: up side (12 o'clock, reverse scan)
• Optimum grayscale (γ = 2.2): perpendicular

Color gamut 56 % (typ. center, to NTSC)

Response time 40 ms (max.), "white 100%" to "black 10%"

Luminance 200 cd/m² (typ.)

Signal system 6-bit digital signals for each of RGB primary colors, synchronous signals

(Hsync, Vsync), dot clock (CLK)

Supply voltages 3.3 V [5.0 V] (Logic, LCD driving), 12 V (Backlight)

Backlight Edge light type: two cold cathode fluorescent lamp (cold cathode type)

Power consumption 6.8 W (typ. at 3.3 V, 12.0 V)

GENERAL SPECIFICATIONS

Item	Specification	Unit
Module size	243.0 \pm 0.5 (H) \times 185.1 \pm 0.5 (V) \times 11.0 max. (D)	mm
Invertor size	$25.0 \pm 0.5 \text{ (H)} \times 100 \pm 83 \text{ (V)} \times 10.2 \text{ max. (D)}$	mm
Display area	211.2 (H) × 158.4 (V)	mm
Number of pixels	640 (H) × 480 (V)	pixel
Dot pitch	0.11 (H) × 0.33 (V)	mm
Pixel pitch	0.33 (H) × 0.33 (V)	mm
Pixel arrangement	RGB (Red, Green, Blue) vertical stripe	
Display colors	262144	color
Weight	Module: 480 (max.) + Inverter: 20 (max.)	g

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit		Remarks	
Supply voltage	Vcc	-0.3 to 6.5	V			
Input voltage	Vı	-0.3 to 6.5	V	Vı – Vcc < 3.0		
Storage temp.	Тѕт	-20 to 60	°C			
Operating temp.	Тор	0 to 50	°C	Module surface No		Note 1
Humidity	RH	≤ 95 % relative humidity		Ta ≤ 40 °C	No conde	nsation
		≤ 85 % relative humidity		40 < Ta ≤ 50 °C		
		Absolute humidity shall not exceed T _a = 50 °C, 85 % relative humidity level.		Ta > 50 °C		

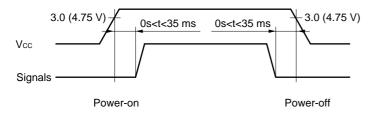
Note 1. Measured at the display area

ELECTRICAL CHARACTERISTICS

(1) Logic, LCD driving

Ta = 25 °C

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remarks
Supply voltage	Vcc	3.0 (4.75)	3.3 (5.0)	3.6 (5.25)	V	Vcc = 3.3 V (Vcc = 5.0 V)
Logic input "L" voltage	VIL	0	-	Vcc × 0.3	V	CMOS level
Logic input "H" voltage	ViH	Vcc × 0.7	-	Vcc	V	Sivied level
Supply current	Icc	-	* ¹ 300	400	mA	Vcc = 3.3 V
		_	(200)	(300)	mA	(Vcc = 5.0 V)


^{*1.} Checker flag pattern (in EIAJ ED-2522)

(2) Backlight

Ta = 25 °C

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remarks
Supply voltage	V _{DDB}	11.4	12.0	12.6	V	-
Supply current	IDDB	_	480	550	mA	200cd/m² (typ.)

SUPPLY VOLTAGE SEQUENCE

Note 1. The supply voltage for input signals should be same as Vcc.

Note 2. Apply VDDB within the LCD operation period. When the backlight turns on before LCD operation or the LCD operation turns off before the backlight turns off, the display may momentarily become white.

Note 3. When the power is off, please keep whole signals (Hsync, Vsync, CLK, data) low level or high impedance.

INTERFACE PIN CONNECTION

(1) Interface signals, power supply

Module side connector

CN1 ... DF9C-31P-1V (No. 1 to 31)

Supplier: HIROSE ELECTRIC CO., LTD.

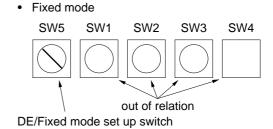
Mating connector DF9-31S-1V or DF9M-31S-1R

Pin No.	Symbol	Function
1	GND	Ground
2	CLK	Dot clock
3	Hsync	Horizontal sync.
4	Vsync	Vertical sync.
5	GND	Ground
6	R0	Red data (LSB)
7	R1	Red data
8	R2	Red data
9	R3	Red data
10	R4	Red data
11	R5	Red data (MSB)
12	GND	Ground
13	G0	Green data (LSB)
14	G1	Green data
15	G2	Green data
16	G3	Green data
17	G4	Green data
18	G5	Green data (MSB)

Pin No.	Symbol	Function
19	GND	Ground
20	В0	Blue data (LSB)
21	B1	Blue data
22	B2	Blue data
23	В3	Blue data
24	B4	Blue data
25	B5	Blue data (MSB)
26	GND	Ground
27	DE	Data enable
28	Vcc	Power supply
29	Vcc	Power supply
30	N. C.	Non-connection
31	N. C.	Non-connection

LSB: Least Significant Bit MSB: Most Significant Bit

Note 1. Vcc: All Vcc terminals should be connected to 3.3 V or 5.0 V.


Note 2. DE/Fixed mode select is set by SW5 on the rear side.

• DE mode (factory set)

SW5 SW1 SW2 SW3 SW4

out of relation

DE/Fixed mode set up switch

Note 3. GND is connected to the frame of the LCD module.

(2) Backlight

Inverter side connector 1 Mating connector 1
 CN2 ··· LZ-5P-SL-SMT LZ-5S-SC3

Supplier: Japan Aviation Electronics Industry Limited (JAE)

Pin No.	Symbol	Function	
1	V _{DDB}	Backlight power supply	
2	V _{DDB}	Backlight power supply	
3	GNDB	Backlight ground	
4	GNDB	Backlight ground	
5	BRTHL	Backlight luminance select	Note 1

Note 1. High luminance (100 %) ... BRTHL = +5 V or OPEN Low luminance (60 %) ... BRTHL = GND

Inverter side connector 2
 CN3 ··· IL-Z-3PL-SMTY
 Mating connector 2
 IL-Z-3S-S125C3

Supplier: Japan Aviation Electronics Industry Limited (JAE)

Pin No.	Symbol	Function	
1	BRTC	Backlight ON/OFF signal	Note 1
2	BRTH	Luminance control input	Note 2
3	BRTL	Luminance control input	Note 2

Note 1. TTL level

Backlight ON ... BRTC = H or Open Backlight OFF ... BRTC = L

Note 2. <1> A way of luminance control by a variable resistor
This way works when BRTHL (No. 5 pin) of CN3 is opened.

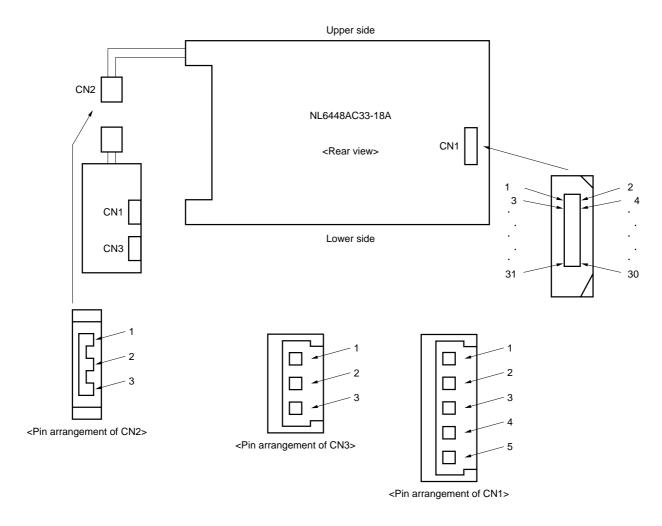
 $\label{eq:mating_problem} \begin{tabular}{ll} \begin{tabular}{ll$

<2> A way of luminance control by a voltage

This way works when BRTHL and BRTL are opend. The range of input voltage between BRTH and GNDB is as follows.

Minimum luminance (50 %) : 2.5 V Maximum luminance (100 %) : \leq 1.2 V

<3> A way of luminace control by a current


This module can not use the luminance control by a current, because GNDB is in contact with the frame.

 Lamp side connector CN2 ··· BHR-03VS-1 Mating connector SM02 (8.0) B-BHS-TB

Supplier: J. S. T TRADING COMPANY, LTD.

Pin No.	Symbol	Function
1	GNDB	Backlight ground
2	Vн	High voltage terminal
3	Vн	High voltage terminal

<Connector location>

Note 1. CN2 is not connected each other at shipment. It should be connected, when LCD is operated.

DISPLAY COLORS vs. INPUT DATA SIGNALS

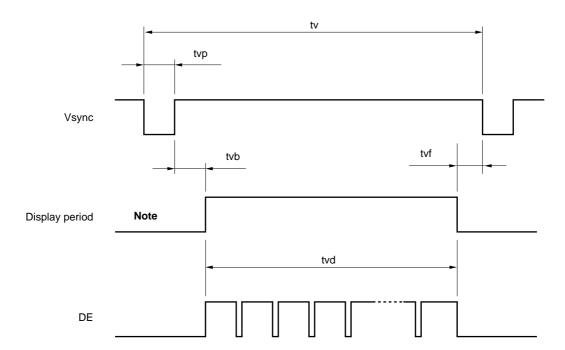
Diapley colors							Data	signa	ıl (0:	Low	leve	, 1:	High le	evel)					
Display colors		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	В4	ВЗ	B2	В1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Basic colors	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	dark	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Red grayscale	↑																		
	↓ ↓				İ						İ						İ		
	bright	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
		1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	dark	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Green grayscale	↑										 								
Groom grayoodio	↓																		
	bright	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
		0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Blue grayscale	↑																		
Diao grayocaic	↓ ↓																		
	bright	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
		0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note Colors are developed in combination with 6 bit signals (64 steps in grayscale) of each primary red, green, and blue color.

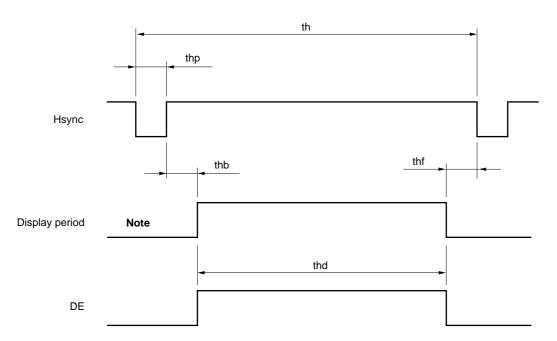
This process can result in up to 262144 (64 \times 64 \times 64) colors.

8

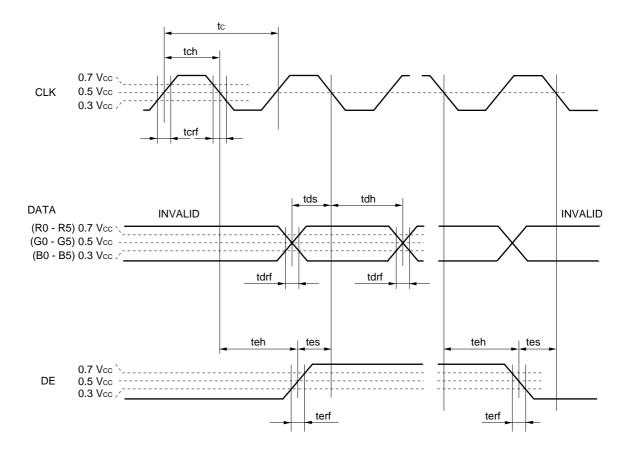
INPUT SIGNAL TIMING

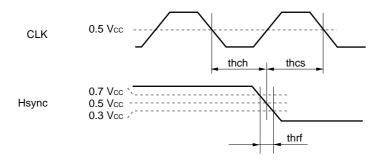

(1) Input signal specifications (DE mode is default)

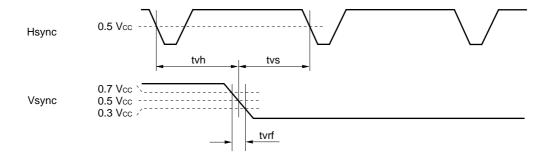
	Parameter	Symbol	Min.	Тур.	Max.	Unit	Remarks
CLK	Frequency	1/tc	21.0	25.175	29.0	MHz	39.72 ns (typ.)
	Duty	tch/tc	0.4	0.5	0.6	-	-
	Rise, fall	tcrf	_	-	10	ns	-
Hsync	Period	th	30.0	31.778	33.6	μs	31.468 kHz (typ.)
			_	800	-	CLK	
	Display period	thd		640		CLK	-
	Front-porch	thf		16		CLK	Fixed mode
			2	16	-	CLK	-
	Pulse width	thp	_	96	-	CLK	Fixed mode
			10	96	-	CLK	-
	Back-porch	thb	_	48	-	CLK	Fixed mode
			4	48	-	CLK	Adjustable range by DE signal
	Note 1) th	np + thb		144		CLK	Fixed mode
			14	144	-	CLK	Adjustable range by DE signal
	CLK-Hsync timing	thch	12	_	-	ns	-
	Hsync-CLK timing	thcs	8	-	-	ns	-
	Hsync-Vsync timing	tvh	1	_	-	CLK	_
	Vsync-Hsync timing	tvs	30	_	-	ns	-
	Rise, fall	thrf	-	_	10	ns	_
Vsync	Period	tv	16.1	16.683	17.2	ms	59.94 Hz (typ.)
			-	525	-	Н	
	Display period	tvd	480			Н	_
	Front-porch	t∨f		12		Н	Fixed mode
			1	12	-	Н	_
	Pulse width	tvp	-	2	ı	Н	Fixed mode
			1	2	ı	Н	_
	Back-porch	tvb	-	31	ı	Н	Fixed mode
			4	31	-	Н	Adjustable range by DE signal
	Note 1) tv	/p + tvb		33		Н	Fixed mode
			5	33	-	Н	Adjustable range by DE signal
	Rise, fall		_	_	10	ns	_
DATA	CLK-DATA timing	tds	8	-	-	ns	-
R0 - R5 G0 - G5	DATA-CLK timing	tdh	12	-	-	ns	-
B0 - B5	Rise, fall	tdrf	_	-	10	ns	-
DE	DE-CLK timing	tes	8	-	-	ns	_
	CLK-DE timing	teh	12	-	-	ns	
	Rise, fall	terf	_	_	10	ns	


Note 1. All of parameters should be kept in the specified range.

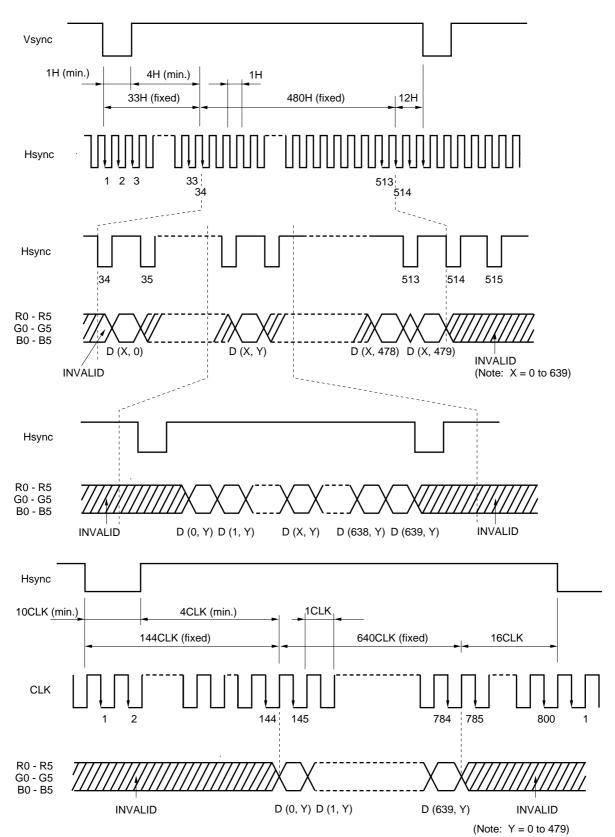
(2) Definition of input signal timing

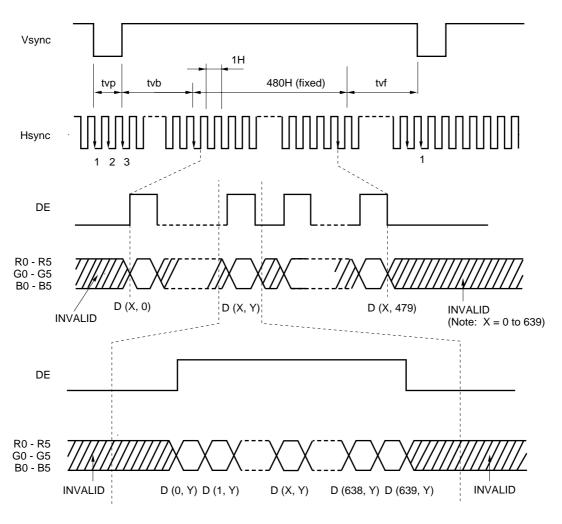

<Vertical>

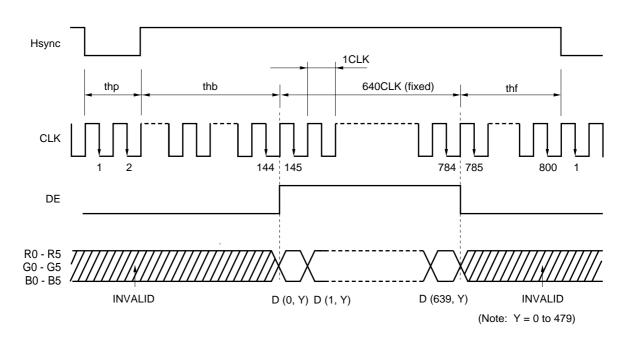



<Horizontal>

- Note 1. These do not exist as actual signals.
 - 2. Set the total of thp + thb and tvp + tvb as the table of input signal timing, otherwise display position is shifted to right or left side, or to up or down side.



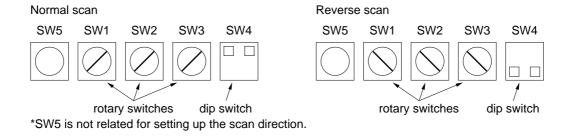



(3) Input signal timing chart

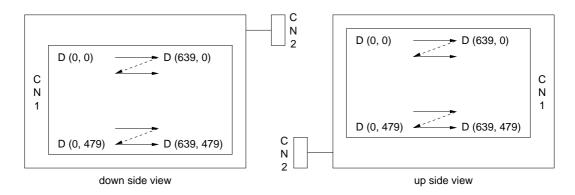
a) Fixed mode

b) DE mode

DISPLAY POSITION


Normal scan (factory set)

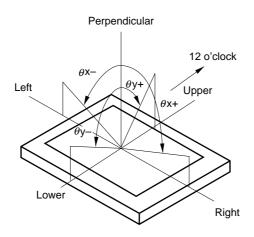
D (0, 0)	D (1, 0)		D (X, 0)		D (638, 0)	D (639, 0)
D (0, 1)	D (1, 1)		D (X, 1)		D (638, 1)	D (639, 1)
1 1	I I I	- + - 1	1	- + - 1	I I I	1 1
D (0, Y)	D (1, Y)		D (X, Y)		D (638, Y)	D (639, Y)
1	1	- + -	1 1 1	- + - 1	I I	1 1 1
D (0, 478)	D (1, 478)		D (X, 478)		D (638, 478)	D (639, 478)
D (0, 479)	D (1, 479)		D (X, 479)		D (638, 479)	D (639, 479)


Reverse scan

D (639, 479)	D (638, 479)		D (X, 479)		D (1, 479)	D (0, 479)
D (639, 478)	D (638, 478)		D (X, 478)		D (1, 478)	D (0, 478)
1	1	- + - -	1	- + - 1	1	1 1 1
D (639, Y)	D (638, Y)		D (X, Y)		D (1, Y)	D (0, Y)
1	1	- + -	1	- + -	1	1 1
D (639, 1)	D (638, 1)		D (X, 1)		D (1, 1)	D (0, 1)
D (639, 0)	D (638, 0)		D (X, 0)		D (1, 0)	D (0, 0)

Note 1. The scan direction is set up by switches on the rear side.

Note 2. Below drawings shows relation between the scan direction and viewing direction.

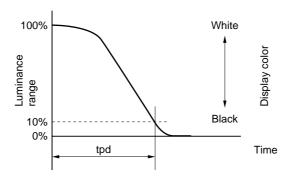

OPTICAL CHARACTERISTICS

Ta = 25°C, at normal scan **Note 1**

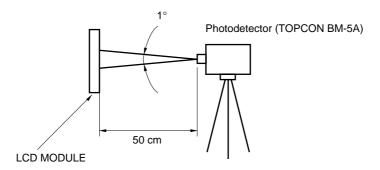
It	em	Symbols	Conditions	Min.	Тур.	Max.	Unit	Remarks	
Viewing angle range	Horizontal	θx+	CR > 10, θ y = ±0°		45	-	deg.	Note 2	
		<i>θ</i> х-	CR > 10, θ y = $\pm 0^{\circ}$	30	45	-	deg.		
	Vertical	θy+	CR > 10, θ y = $\pm 0^{\circ}$	20	30	_	deg.		
		<i>θ</i> у–	CR > 10, θ y = $\pm 0^{\circ}$	10	20	-	deg.		
Contrast ra	tio	CR	Note 3	80	150	-	_	- Note 4	
Response time		tpd	White → black	-	_	40	ms	Note 5	
			(100%) (10%)						
Color gamu	t	С	at center, to NTSC	35	56	_	%	_	
Luminance		Lu	Note 3	150	200	_	cd/m ²	Note 6	
Luminance uniformity		-	max./min.	_	_	1.25	_	Note 7	

Notes 1.
$$Vcc = 3.3 \text{ V}, Vddb = 12 \text{ V}$$

2. Definitions of viewing angle are as follows.

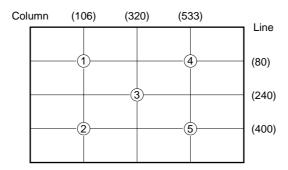

- **3.** Viewing angle: $\theta x = \pm 0^{\circ}$, $\theta y = \pm 0^{\circ}$, At center.
- 4. The contrast ratio is calculated by using the following formula.

Contrast ratio (CR) =
$$\frac{\text{Luminance with all pixels in "white"}}{\text{Luminance with all pixels in "black"}}$$


The Luminance is measured in darkroom.

5. Definition of response time is as follows.

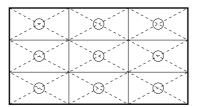
Photodetector output signal is measured when the Luminance changes "white" to "black". Response time is the time between 10% and 100% of the photodetector output amplitude.


6. The luminance is measured after 20 minutes from the module works, with all pixels in "white". Typical value is measured after luminance saturation.

7. The luminance uniformity is calculated by using following formula.

$$Luminance uniformity = \frac{Maximum luminance}{Minimum luminance}$$

The luminance is measured at near the five points shown below.



RELIABILITY TEST

No.	Test items	Test conditions	Judgement
1.	High temperature/humidity	50 ± 2°C, 85% relative humidity	Note 1
	operation	240 hours	
		Display data is black.	
2.	Heat cycle (operation)	<1> 0°C ± 3°C 1 hour	Note 1
		55°C ± 3°C 1 hour	
		<2> 50 cycles, 4 hours/cycle	
		<3> Display data is black.	
3.	Thermal shock (non-operation)	<1> -25°C ± 3°C 30 minutes 60°C ± 3°C 30 minutes	Note 1
		<2> 100 cycles	
		<3> Temperature transition time within 5 minutes	
4.	Vibration (non-operation)	<1> 5 - 100 Hz, 2G	Note 1
		1 minute/cycle,	Note 2
		X, Y, Z direction	
		<2> 120 times each direction	
5.	Mechanical shock (non-	<1> 55 G, 11 ms	Note 1
	operation)	X, Y, Z direction	Note 2
		<2> 5 times each direction	
6.	ESD (operation)	150 pF, 150 Ω, ±10 kV	Note 1
		9 places on a panel Note 3	
		10 times each place at one-second intervals	
7.	Dust (operation)	15 kinds of dust (JIS Z 8901)	Note 1
		Hourly 15 seconds stir, 8 times repeat	

Notes 1. Display function is checked under the same condition as LCD module out-going inspection.

- 2. Physical damage.
- 3. Discharge points are shown in the figure.

GENERAL CAUTIONS

Next figures and sentence are very important, please understand these contents as follows.

CAUTION

This figure is a mark that you will get hurt and/or the module will have damages when you make a mistake to operate.

This figure is a mark that you will get an electric shock when you make a mistake to operate.

This figure is a mark that you will get hurt when you make a mistake to operate

CAUTION

Do not touch an inverter …on which is stuck a caution label… while the LCD module is under the operation, because of dangerous high voltage.

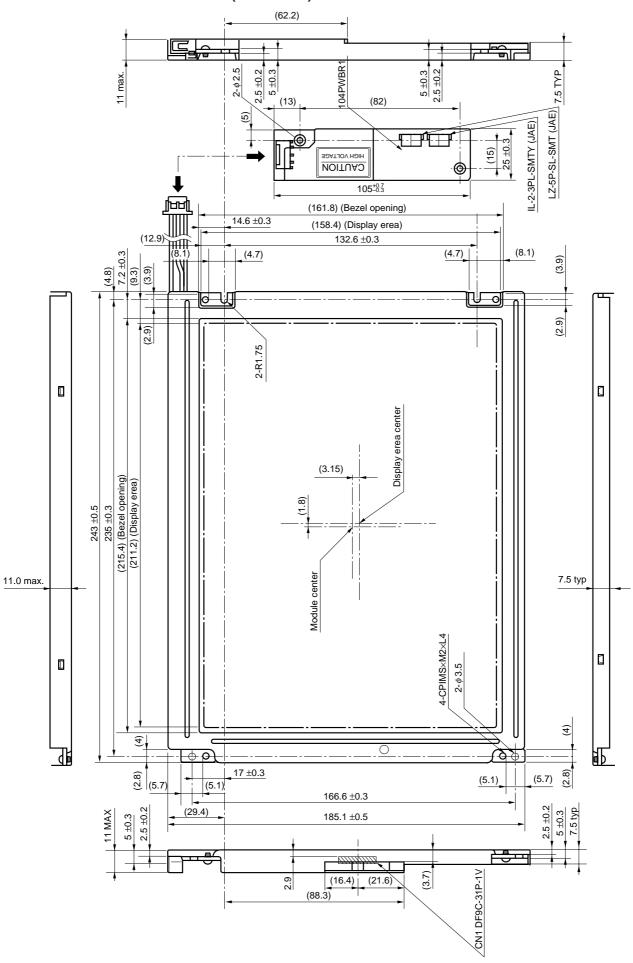
- (1) Caution when taking out the module
 - <1> Pick the pouch only, when taking out the module from a carrier box.
- (2) Cautions for handling the module
 - <1> As the electrostatic discharges may break the LCD module, handle the LCD module with care against electrostatic discharges.
 - <2>

As the LCD panel and backlight element are made from fragile glass material, impulse and pressure to the LCD module should be avoided.

- <3> As the surface of polarizer is very soft and easily scratched, use a soft dry cloth without chemicals for cleaning.
- <4> Do not pull the interface connectors in or out while the LCD module is operating.
- <5> Put the module display side down on a flat horizontal plane.
- <6> Handle connectors and cables with care.
- <7> When the module is operating, do not lose CLK, Hsync, or Vsync signal. If any one of these signals is lost, the LCD panel would be damaged.
- <8> The torque for mounting screw should never exceed 0.294 N·m (3 kgf·cm).
- (3) Cautions for the atmosphere
 - <1> Dew drop atmosphere should be avoided.
 - <2> Do not store and/or operate the LCD module in high temperature and/or high humidity atmosphere. Storage in an electro-conductive polymer packing pouch and under relatively low temperature atmosphere is recommended.
 - <3> This module uses cold cathod fluorescent lamps. Therefore, the life time of lamp becomes short conspicuously at low temperature.
 - <4> Do not operate the LCD module in high magnetic field.

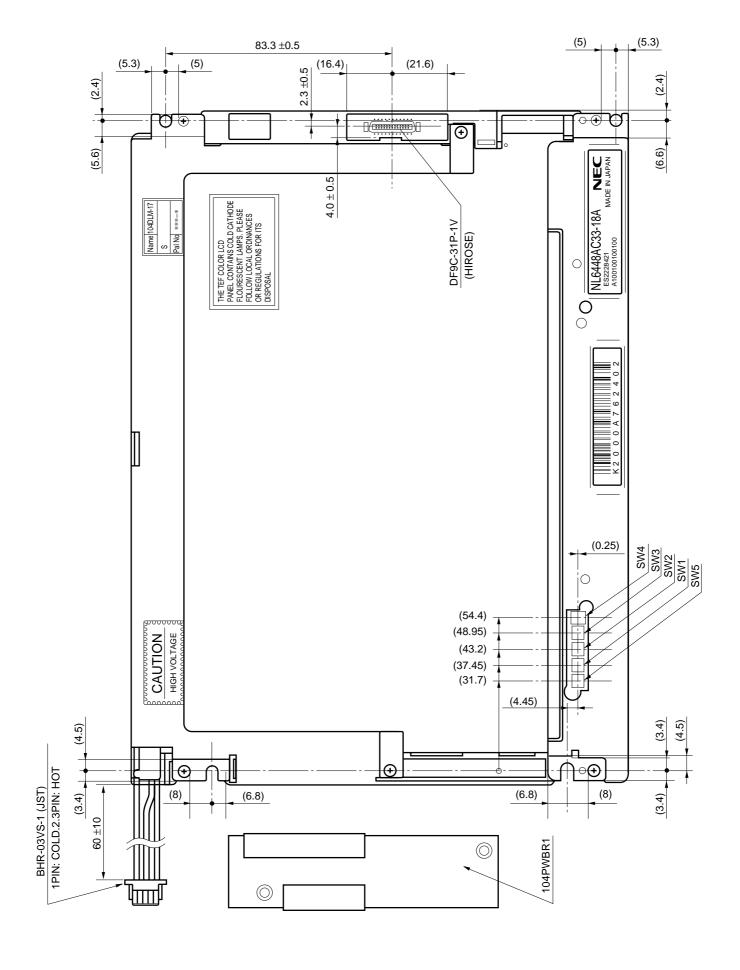
- (4) Caution for the module characteristics
 - <1> Do not apply fixed pattern data signal for a long time to the LCD module. It may cause image sticking. Please use screen savers if the display pattern is fixed more than one hour.
- (5) Other cautions
 - <1> Do not disassemble and/or reassemble LCD module.
 - <2> Do not readjust variable resistors, switches, etc.
 - <3> When returning the module for repair, etc. pack the module not to be broken. We recommend the original shipping packages.

Liquid Crystal Display has the following specific characteristics. There are not defects nor malfunctions.


The display condition of the LCD module may be affected by the ambient temperature.

The LCD module uses cold cathode tube for backlighting. Optical characteristics, like luminance or uniformity, will change in the progres of time.

Uneven brightness and/or small spots may be observed depending on different display patterns.


19

OUTLINE DRAWING: Front View (Unit in mm)

OUTLINE DRAWING: Rear View (Unit in mm)

[MEMO]

[MEMO]

No part of this document may be copied in any form or by any means without the prior written consent of NEC Corporation.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or of others.

While NEC Corporation has been making continuous effort to enhance the reliability of its Electronic Components, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC Electronic Components, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quanlity grades:

"Standard", "Special", and "Specific". The Specific quanlity grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support system or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.