Small Signal MOSFET

30 V, 154 mA, Single, N-Channel, Gate ESD Protection, SC-75

Features

- Low Gate Charge for Fast Switching
- Small 1.6 x 1.6 mm Footprint
- ESD Protected Gate
- Pb-Free Package is Available

Applications

- Power Management Load Switch
- Level Shift
- Portable Applications such as Cell Phones, Media Players, Digital Cameras, PDA's, Video Games, Hand-Held Computers, etc.

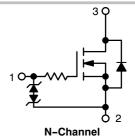
MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

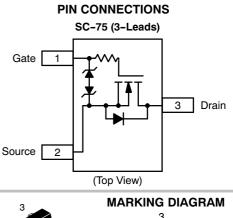
Paramo	Symbol	Value	Unit	
Drain-to-Source Voltage		V _{DSS}	30	V
Gate-to-Source Voltage	Gate-to-Source Voltage			V
Continuous Drain Current (Note 1)	۱ _D	154	mA	
Power Dissipation (Note 1)	P _D	300	mW	
Pulsed Drain Current	I _{DM}	618	mA	
Operating Junction and Si	T _J , T _{STG}	-55 to 150	°C	
Continuous Source Curren	I _{SD}	154	mA	
Lead Temperature for Sole (1/8" from case for 10 s)	ΤL	260	°C	

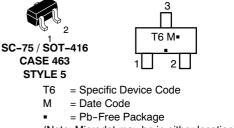
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Мах	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	416	°C/W


1. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).




ON Semiconductor®

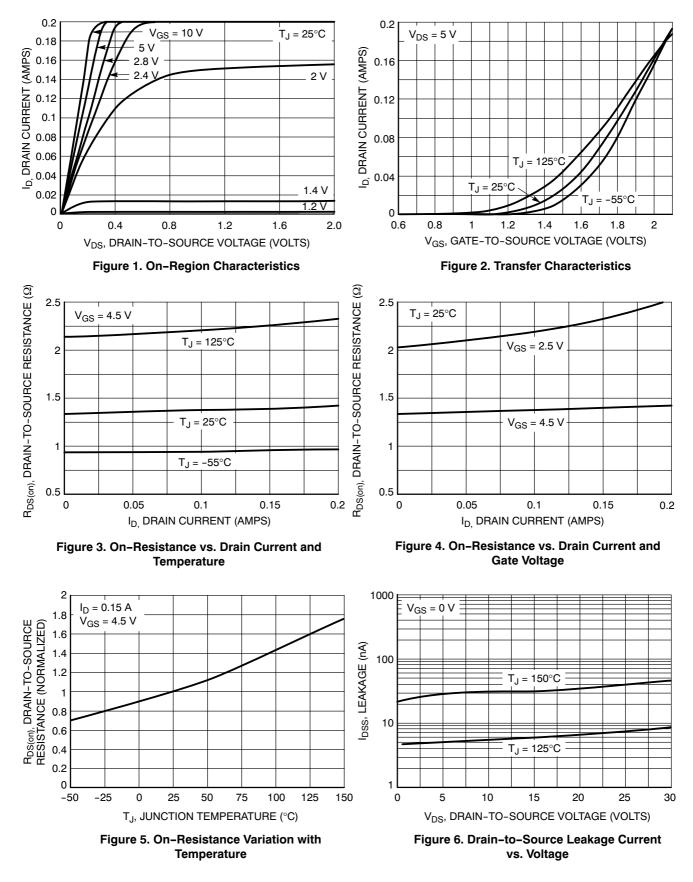
http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} Typ @ V _{GS}	I <mark>D</mark> MAX (Note 1)
00.14	1.4 Ω @ 4.5 V	154 4
30 V	2.3 Ω @ 2.5 V	154 mA

(Note: Microdot may be in either location)

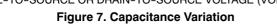
ORDERING INFORMATION

Device	Package	Shipping†
NTA7002NT1	SC-75	3000 Tape & Reel
NTA7002NT1G	SC-75 (Pb-Free)	3000 Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 100 μ A	30			V
Zero Gate Voltage Drain Current	I _{DSS}	V_{GS} = 0 V, V_{DS} = 30 V			1.0	μΑ
Zero Gate Voltage Drain Current	I _{DSS}	V_{GS} = 0 V, V_{DS} = 20 V, T = 85 $^{\circ}\mathrm{C}$			1.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ±10 V			±25	μA
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ±5 V			±1.0	μA
Gate-to-Source Leakage Current	I _{GSS}	$\begin{array}{c} V_{DS} = 0 \ V, \ V_{GS} = \pm 5 \ V \\ T = 85 \ ^\circ C \end{array}$			±1.0	μΑ
ON CHARACTERISTICS (Note 2)				-		-
Gate Threshold Voltage	V _{GS(TH)}	V_{DS} = V_{GS} , I_D = 100 μ A	0.5	1.0	1.5	V
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 4.5 V, I _D = 154 mA		1.4	7.0	Ω
		V _{GS} = 2.5 V, I _D = 154 mA		2.3	7.5	
Forward Transconductance	9fs	V _{DS} = 3 V, I _D = 154 mA		80		mS
CAPACITANCES						
Input Capacitance	C _{ISS}			11.5	20	pF
Output Capacitance	C _{OSS}	V _{DS} = 5.0 V, f = 1 MHz, V _{GS} = 0 V		10	15	
Reverse Transfer Capacitance	C _{RSS}			3.5	6.0	
SWITCHING CHARACTERISTICS (Note 3)						
Turn-On Delay Time	t _{d(ON)}			13		ns
Rise Time	t _r	V _{GS} = 4.5 V, V _{DS} = 5.0 V,		15		ns
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 75 \text{ mA}, R_G = 10 \Omega$		98		
Fall Time	t _f			60		
DRAIN-SOURCE DIODE CHARACTERISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 154 mA		0.77	0.9	V


Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES

25 1000 F Ciss $T_J = 25^{\circ}C$ V_{DD} = 5.0 V I_D = 75 mA 20 V_{GS} = 4.5 V C, CAPACITANCE (pF) C_{rss} 100 t_{d(off)} 15 t, TIME (ns) E t_f \square 10 tr Ciss 10 t_{d(on)} C_{oss} 5 $V_{DS} = 0 V$ V_{GS} = 0 V Crss 0 1 5 5 10 15 10 0 20 1 10 100 V_{GS} | V_{DS} R_G, GATE RESISTANCE (OHMS) GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

TYPICAL PERFORMANCE CURVES

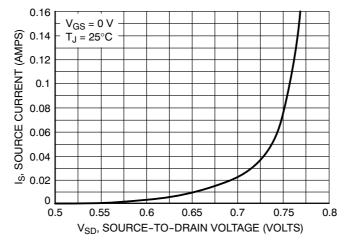
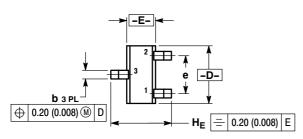
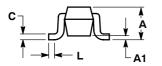
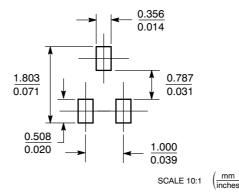




Figure 9. Diode Forward Voltage vs. Current

PACKAGE DIMENSIONS

SC-75 / SOT-416 CASE 463-01 ISSUE F

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14 5M 1982


2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.70	0.80	0.90	0.027	0.031	0.035
A1	0.00	0.05	0.10	0.000	0.002	0.004
b	0.15	0.20	0.30	0.006	0.008	0.012
С	0.10	0.15	0.25	0.004	0.006	0.010
D	1.55	1.60	1.65	0.059	0.063	0.067
Е	0.70	0.80	0.90	0.027	0.031	0.035
е	1.00 BSC			0	0.04 BSC)
L	0.10	0.15	0.20	0.004	0.006	0.008
He	1.50	1.60	1.70	0.061	0.063	0.065

3. DRAIN

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use payes that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative