PIN CONFIGURATIONS

CMOS single-chip 8-bit microcontroller

OM5232

DESCRIPTION

The OM5232 Single-Chip 8-Bit Microcontroller is manufactured in an advanced CMOS process and is a derivative of the 80C51 microcontroller family. The OM5232 has the same instruction set as the 80C51.

See also:

- OM5202 ROMless version
- OM5234 16K bytes mask programmable ROM
- OM5238 32K bytes mask programmable ROM

This device provides architectural enhancements that make it applicable in a variety of applications for general control systems. The OM5232 contains a non-volatile $8k \times 8$ read-only program memory, a volatile 256 × 8 read/write data memory, four 8-bit I/O ports, two 16-bit timer/event counters (identical to the timers of the 80C51), a multi-source, two-priority-level, nested interrupt structure, UART and on-chip oscillator and timing circuits. For systems that require extra capability, the OM5232 can be expanded using standard TTL compatible memories and logic.

The device also functions as an arithmetic processor having facilities for both binary and BCD arithmetic plus bit-handling capabilities. The instruction set consists of over 100 instructions: 49 one-byte, 45 two-byte and 17 three-byte. With a 16MHz crystal, 58% of the instructions are executed in 0.75µs and 40% in 1.5µs. Multiply and divide instructions require 3µs.

FEATURES

- 80C51 central processing unit
- 8k × 8 ROM, expandable externally to 64k bytes
- 256 × 8 RAM, expandable externally to 64k bytes
- Two standard 16-bit timer/counters
- Four 8-bit I/O ports
- Two open drain I/O's (P1.6, P1.7)
- Full-duplex UART facilities
- Power control modes
 - Idle mode
 - Power-down mode
- ROM code protection
- Extended frequency range: 1.2 to 16 MHz
- Operating ambient temperature range: 0 to +70°C

		V _{DD}
P1.0 1	40	V _{DD}
P1.1 2	39	P0.0/AD0
P1.2 3	38	P0.1/AD1
P1.3 4	37	P0.2/AD2
P1.4 5	36	P0.3/AD3
P1.5 6	35	P0.4/AD4
P1.6 7	34	P0.5/AD5
P1.7 8	33	P0.6/AD6
RST 9	32	
RxD/P3.0 10	DIP 31] ea] ale
TxD/P3.1 11	30	ALE
INT0/P3.2 12	29	
INT1/P3.3 13	28	P2.7/A15
T0/P3.4 14	27	P2.6/A14
T1/P3.5 15	26	P2.5/A13
WR/P3.6 16	25	P2.4/A12
RD/P3.7 17	24	P2.3/A11
XTAL2 18	23	P2.2/A10
XTAL1 19	22	
VSS 20	21	P2.0/A8
12	122	
44	34	
L.	-	-
		33
	QFP (SOT307–2)	
11 ===		23
[]	[22	
		NCTIONS.
SEE PAGE 2	FOR QFP PIN FUI	NCTIONS.

PART NUMBER SELECTION

PHILIPS PART ORDER NUMBER PART MARKING	PACKAGE NUMBER	TEMPERATURE RANGE °C, PACKAGE	FREQUENCY MHz
OM5232/FBP/xxx ¹⁾	SOT129	0 to +70, Plastic Dual In-line Package, 40 leads	1.2 to 16
OM5232/FBB/xxx ¹⁾	SOT307-2	0 to +70, Plastic Quad Flat Pack, 44 leads	1.2 to 16

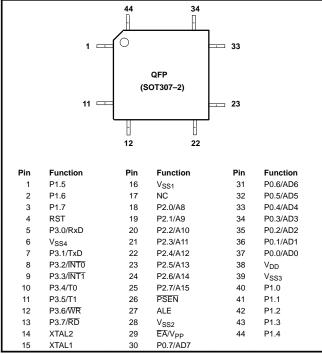
NOTE:

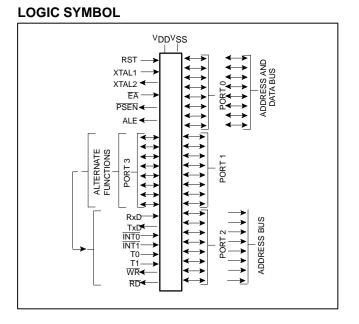
1. xxx denotes the ROM code number.

EQUIVALENT TYPES

Details are as specified by the data sheet for the equivalent type:

OM5202 P80C652 without I²C function.

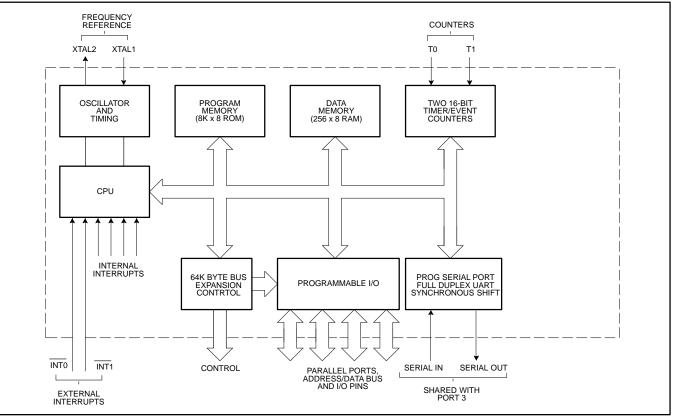

QM5232 = P83C652 without I²C function.


OM5234 = P83C654 without I²C function.

OM5238 = P83C528 without I²C function.

OM5232

QFP PIN FUNCTIONS



NOTE:

1. Due to EMC improvements, all V_{SS} pins (6, 16, 28, 39) must be connected to $V_{SS}.$

BLOCK DIAGRAM

PIN DESCRIPTIONS

	PIN NU	JMBER		
MNEMONIC	DIP	QFP	TYPE	NAME AND FUNCTION
V _{SS}	20	6, 16, 28, 39	I	Ground: 0V reference. With the QFP package all V _{SS} pins (V _{SS1} to V _{SS4}) must be connected.
V _{DD}	40	38	I	Power Supply: This is the power supply voltage for normal, idle, and power-down operation.
P0.0–0.7	39–32	37–30	I/O	Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory. In this application, it uses strong internal pull-ups when emitting 1s.
P1.0–P1.5	1–6	40–44, 1	I/O	Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups, except P1.6 and P1.7 which are open drain. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 1 pins that are externally pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: I_{IL}). Alternate functions include:
P1.6 P1.7	7 8	2 3	I/O I/O	open drain output open drain output
P2.0–P2.7	21–28	18–25	I/O	Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 2 pins that are externally being pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: I_{IL}). Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOV @Ri), port 2 emits the contents of the P2 special function register.
P3.0–P3.7	10–17	5, 7–13	I/O	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 3 pins that are externally being pulled low will source current because of the pull-ups. (See DC Electrical Characteristics: I_{IL}). Port 3 also serves the special features of the 80C51 family, as listed below:
	10	5	I.	RxD (P3.0): Serial input port
	11	7	0	TxD (P3.1): Serial output port
	12	8		INTO (P3.2): External interrupt
	13	9 10		INT1 (P3.3): External interrupt
	14 15	10		T0 (P3.4): Timer 0 external input T1 (P3.5): Timer 1 external input
	16	12	Ö	WR (P3.6): External data memory write strobe
	17	13	Ő	RD (P3.7): External data memory read strobe
RST	9	4	I	Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V_{SS} permits a power-on reset using only an external capacitor to V_{DD} .
ALE	30	27	I/O	Address Latch Enable: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency. Note that one ALE pulse is skipped during each access to external data memory.
PSEN	29	26	0	Program Store Enable: Read strobe to external program memory via Port 0 and Port 2. It is activated twice each machine cycle during fetches from the external program memory. When executing out of external program memory two activations of PSEN are skipped during each access to external data memory. PSEN is not activated (remains HIGH) during no fetches from external program memory. PSEN can sink/source 8 LSTTL inputs and can drive CMOS inputs without external pull–ups.
ĒĀ	31	29	I	External Access: If during a RESET, EA is held at TTL, level HIGH, the CPU executes out of the internal program memory ROM provided the Program Counter is less than 16384. If during a RESET, EA is held a TTL LOW level, the CPU executes out of external program memory. EA is not allowed to float.
XTAL1	19	15	I	Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.
XTAL2	18	14	0	Crystal 2: Output from the inverting oscillator amplifier.
			L	

NOTE:

To avoid "latch-up" effect at power-on, the voltage on any pin at any time must not be higher than V_{DD} + 0.5V or V_{SS} – 0.5V, respectively.

OM5232

OM5232

Table 1. OM5232 Special Function Registers

SYMBOL	DESCRIPTION	DIRECT ADDRESS	BIT MSB	ADDRE	SS, SYME	BOL, OR A	LTERNAT	IVE PORT	FUNCTIO	DN LSB	RESET VALUE
ACC*	Accumulator	E0H	E7	E6	E5	E4	E3	E2	E1	E0	00H
B*	B Register	F0H	F7	F6	F5	F4	F3	F2	F1	F0	00H
DPTR:	Data Pointer										
DPH DPL	(2 bytes) Data Pointer High Data Pointer Low	83H 82H									00H 00H
			AF	AE	AD	AC	AB	AA	A9	A8	
IE*#	Interrupt Enable	A8H	EA		ES1	ES0	ET1	EX1	ET0	EX0	0x000000B
			BF	BE	BD	BC	BB	BA	B9	B8	
IP*#	Interrupt Priority	B8H	-		PS1	PS0	PT1	PX1	PT0	PX0	xx000000B
			87	86	85	84	83	82	81	80	
P0*	Port 0	80H	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	FFH
			97	96	95	94	93	92	91	90	
P1*#	Port 1	90H	SDA	SCL							FFH
			A7	A6	A5	A4	A3	A2	A1	A0	
P2*	Port 2	A0H	A15	A14	A13	A12	A11	A10	A9	A8	FFH
			B7	B6	B5	B4	B3	B2	B1	B0	
P3*	Port 3	B0H	RD	WR	T1	Т0	INT1	INTO	TXD	RXD	FFH
PCON	Power Control	87H	SMOD	-	-	-	GF1	GF0	PD	IDL	0xxx0000B
			9F	9E	9D	9C	9B	9A	99	98	
S0CON*#	Serial 0 Port Control	98H	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	00H
S0BUF#	Serial 0 Data Buffer	99H									xxxxxxxB
			D7	D6	D5	D4	D3	D2	D1	D0	
PSW*	Program Status Word	D0H	CY	AC	F0	RS1	RS0	OV	F1	Р	00H
	reserved (Note 1)	DAH									00H
SP	Stack Pointer	81H									07H
	reserved (Note 1)	DBH									00H
	reserved (Note 1)	D9H									F8H
	reserved (Note 1)	D8H									00000000B
			8F	8E	8D	8C	8B	8A	89	88	1
TCON*	Timer Control	88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	оон
TH1	Timer High 1	8DH				-			•	-	00Н
TH0	Timer High 0	8CH									00Н
TL1	Timer Low 1	8BH									00H
TL0	Timer Low 0	8AH									00H
TMOD	Timer Mode	89H	GATE	C/T	M1	MO	GATE	C/T	M1	M0	00Н

* SFRs are bit addressable.

SFRs are modified from or added to the 80C51 SFRs.

1. Reserved for I²C; not supported in OM5232

OM5232

ROM CODE PROTECTION

The OM5232 has an additional security feature. ROM code protection may be selected by setting a mask–programmable security bit (i.e., user dependent). This feature may be requested during ROM code submission. When selected, the ROM code is protected and cannot be read out at any time by any test mode or by any instruction in the external program memory space.

The MOVC instructions are the only instructions that have access to program code in the internal or external program memory. The $\overline{\text{EA}}$ input is latched during RESET and is "don't care" after RESET (also if the security bit is not set). This implementation prevents reading internal program code by switching from external program memory to internal program memory during a MOVC instruction or any other instruction that uses immediate data.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier. The pins can be configured for use as an on-chip oscillator, as shown in the Logic Symbol, page 2.

To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected. There are no requirements on the duty cycle of the external clock signal, because the input to the internal clock circuitry is through a divide-by-two flip-flop. However, minimum and maximum high and low times specified in the data sheet must be observed.

Reset

A reset is accomplished by holding the RST pin high for at least two machine cycles (24 oscillator periods), while the oscillator is running. To insure a good power-on reset, the RST pin must be high long enough to allow the oscillator time to start up (normally a few milliseconds) plus two machine cycles. At power-on, the voltage on V_{DD} and RST must come up at the same time for a proper start-up.

Idle Mode

In the idle mode, the CPU puts itself to sleep while all of the on-chip peripherals stay active. The instruction to invoke the idle mode is the last instruction executed in the normal operating mode before the idle mode is activated. The CPU contents, the on-chip RAM, and all of the special function registers remain intact during this mode. The idle mode can be terminated either by any enabled interrupt (at which time the process is picked up at the interrupt service routine and continued), or by a hardware reset which starts the processor in the same manner as a power-on reset.

Power-Down Mode

In the power-down mode, the oscillator is stopped and the instruction to invoke power-down is the last instruction executed. Only the contents of the on-chip RAM are preserved. A hardware reset is the only way to terminate the power-down mode. The control bits for the reduced power modes are in the special function register PCON. Table 2 shows the state of the I/O ports during low current operating modes.

Table 2. External Pin Status During Idle and Power-Down Mode

MODE	PROGRAM MEMORY	ALE	PSEN	PORT 0	PORT 1	PORT 2	PORT 3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power-down	Internal	0	0	Data	Data	Data	Data
Power-down	External	0	0	Float	Data	Data	Data

Serial Control Register (S1CON) – See Table 3

S1CON (D8H) CR2 ENS1 STA STO SI AA CR1 CR0

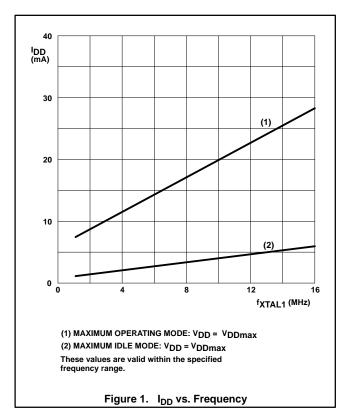
Bits CR0, CR1 and CR2 determine the serial clock frequency that is generated in the master mode of operation.

Table 3. Serial Clock Rates

			BIT FRE	QUENCY (kHz)	AT f _{OSC}	
CR2	CR1	CR0	6MHz	12MHz	16MHz	f _{OSC} DIVIDED BY
0	0	0	23	47	62.5	256
0	0	1	27	54	71	224
0	1	0	31.25	62.5	83.3	192
0	1	1	37	75	100	160
1	0	0	6.25	12.5	17	960
1	0	1	50	100	133	120
1	1	0	100	200	267	60
1	1	1	0.24 < 62.5 0 to 255	0.49 < 62.5 0 to 254	0.65 < 55.6 0 to 253	96 imes (256 – (reload value Timer 1)) reload value range Timer 1 (in mode 2)

OM5232

ABSOLUTE MAXIMUM RATINGS^{1, 2, 3}


PARAMETER	RATING	UNIT
Storage temperature range	–65 to +150	°C
Voltage on any other pin to V _{SS}	–0.5 to + 6.5	V
Input, output current on any single pin	±5	mA
Power dissipation (based on package heat transfer limitations, not device power consumption)	1	W

NOTES:

1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any conditions other than those described in the AC and DC Electrical Characteristics section of this specification is not implied.

2. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maxima.

3. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise noted.

OM5232

DC ELECTRICAL CHARACTERISTICS

 $V_{SS} = 0V$, $V_{DD} = 5.0V \pm 10\%$. Operating temperature range 0 to 70°C.

		TEST	LIN			
SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.		
V _{IL}	Input low voltage, except EA, P1.6, P1.7		-0.5	0.2V _{DD} -0.1	v	
V _{IL1}	Input low voltage to EA		-0.5	0.2V _{DD} -0.3	V	
V _{IL2}	Input low voltage to P1.6, P1.7		-0.5	0.3V _{DD}	V	
V _{IH}	Input high voltage, except XTAL1, RST, P1.6, P1.7		0.2V _{DD} +0.9	V _{DD} +0.5	V	
V _{IH1}	Input high voltage, XTAL1, RST		0.7V _{DD}	V _{DD} +0.5	V	
V _{IH2}	Input high voltage, P1.6, P1.7		0.7V _{DD}	6.0	V	
V _{OL}	Output low voltage, ports 1, 2, 3, except P1.6, P1.7	I _{OL} = 1.6mA ^{7), 8)}		0.45	V	
V _{OL1}	Output low voltage, port 0, ALE, PSEN	I _{OL} = 3.2mA ^{7), 8)}		0.45	V	
V _{OL2}	Output low voltage, P1.6, P1.7	I _{OL} = 3.0mA		0.4	V	
V _{OH}	Output high voltage, ports 1, 2, 3, ALE, PSEN 9)	I _{OH} = −60μA I _{OH} = −25μA I _{OH} = −10μA	2.4 0.75V _{DD} 0.9V _{DD}		V V V	
V _{OH1}	Output high voltage; port 0 in external bus mode	I _{OH} = –800μΑ I _{OH} = –300μΑ I _{OH} = –80μΑ	2.4 0.75V _{DD} 0.9V _{DD}		V V V	
IIL	Logical 0 input current, ports 1, 2, 3, except P1.6, P1.7	V _{IN} = 0.45V		-50	μA	
I _{TL}	Logical 1-to-0 transition current, ports 1, 2, 3, except P1.6, P1.7	See note 6)		-650	μA	
I _{L1}	Input leakage current, port 0, EA	0.45V < V _I < V _{DD}		±10	μΑ	
I _{L2}	Input leakage current, P1.6, P1.7	0V < V _I < 6.0V 0V < V _{DD} < 6.0V		±10	μΑ	
I _{DD}	Power supply current: Active mode @ 16MHz ^{2), 10)} Idle mode @ 16MHz ^{3), 10)} Power down mode ^{4), 5)}	See note 1) V _{DD} =6.0V		26.5 6 50	mA mA μA	
R _{RST}	Internal reset pull-down resistor		50	150	kΩ	
C _{IO}	Pin capacitance	Freq.=1MHz		10	pF	

NOTES FOR DC ELECTRICAL CHARACTERISTICS:

1. See Figures 9 through 11 for I_{DD} test conditions.

2. The operating supply current is measured with all output pins disconnected; XTAL1 driven with $t_r = t_f = 5ns$;

 $V_{IL} = V_{SS} + 0.5V$; $V_{IH} = V_{DD} - 0.5V$; XTAL2 not connected; $\overline{EA} = RST = Port 0 = P1.6 = P1.7 = V_{DD}$. See Figure 9. 3. The idle mode supply current is measured with all output pins disconnected; XTAL1 driven with $t_r = t_f = 5ns$; $V_{IL} = V_{SS} + 0.5V$;

 $V_{IH} = V_{DD} - 0.5V$; XTAL2 not connected; Port 0 = P1.6 = P1.7 = V_{DD} ; $\overline{EA} = RST = V_{SS}$. See Figure 10.

The power-down current is measured with all output pins disconnected; XTAL2 not connected; Port 0 = P1.6 = P1.7 = V_{DD}; 4.

 $\overline{EA} = RST = V_{SS}$. See Figure 11.

5. $2V \leq V_{PD} \leq V_{DD}$ max.

Pins of ports 1, 2, and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its 6. maximum value when V_{IN} is approximately 2V.

7. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the VOLs of ALE and ports 1 and 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.

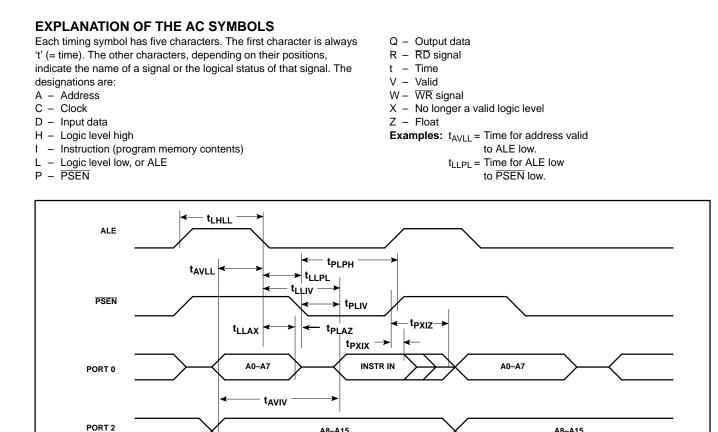
8. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows: Maximum I_{OL} = 10mA per port pin; Maximum I_{OL} = 26mA total for Port 0; Maximum I_{OL} = 15mA total for Ports 1, 2, and 3; Maximum I_{OL} = 71mA total for all output pins. If I_{OL} exceeds the test conditions, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions. Capacitive loading on ports 0 and 2 may cause the V_{OH} on ALE and PSEN to momentarily fall below the 0.9V_{DD} specification when the

9 address bits are stabilizing.

10. IDDMAX for other frequencies can be derived from Figure 1, where FREQ is the external oscillator frequency in MHz. IDDMAX is given in mA.

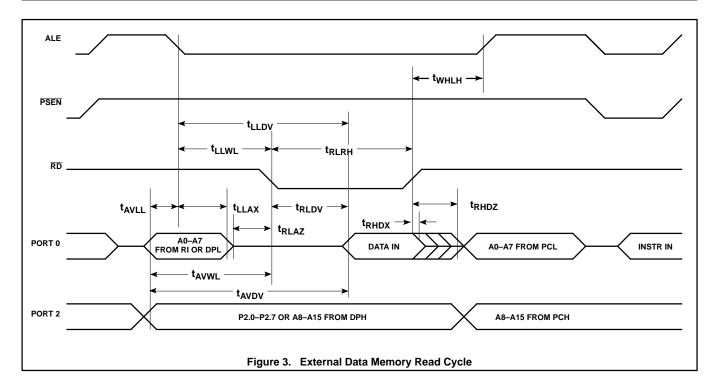
OM5232

			16MHz	CLOCK	VARIABL		
SYMBOL	FIGURE	PARAMETER	MIN	MAX	MIN	MAX	
1/t _{CLCL}	2	Oscillator frequency			1.2	16	MHz
LHLL	2	ALE pulse width	85		2t _{CLCL} -40		ns
AVLL	2	Address valid to ALE low	8		t _{CLCL} –55		ns
LLAX	2	Address hold after ALE low	28		t _{CLCL} –35		ns
LLIV	2	ALE low to valid instruction in		150		4t _{CLCL} -100	ns
LLPL	2	ALE low to PSEN low	23		t _{CLCL} -40		ns
PLPH	2	PSEN pulse width	143		3t _{CLCL} -45		ns
PLIV	2	PSEN low to valid instruction in		83		3t _{CLCL} -105	ns
PXIX	2	Input instruction hold after PSEN	0		0		ns
PXIZ	2	Input instruction float after PSEN		38		t _{CLCL} –25	ns
AVIV	2	Address to valid instruction in		208		5t _{CLCL} -105	ns
PLAZ	2	PSEN low to address float		10		10	ns
Data Memo	ry	•			•		
RLRH	3, 4	RD pulse width	275		6t _{CLCL} -100		ns
WLWH	3, 4	WR pulse width	275		6t _{CLCL} -100		ns
RLDV	3, 4	RD low to valid data in		148		5t _{CLCL} -165	ns
RHDX	3, 4	Data hold after RD	0		0		ns
RHDZ	3, 4	Data float after RD		55		2t _{CLCL} -70	ns
LLDV	3, 4	ALE low to valid data in		350		8t _{CLCL} -150	ns
AVDV	3, 4	Address to valid data in		398		9t _{CLCL} -165	ns
LLWL	3, 4	ALE low to RD or WR low	138	238	3t _{CLCL} -50	3t _{CLCL} +50	ns
AVWL	3, 4	Address valid to WR low or RD low	120		4t _{CLCL} -130		ns
QVWX	3, 4	Data valid to WR transition	3		t _{CLCL} -60		ns
DW	3, 4	Data setup time before WR	288		7t _{CLCL} -150		ns
WHQX	3, 4	Data hold after WR	13		t _{CLCL} -50		ns
RLAZ	3, 4	RD low to address float		0		0	ns
WHLH	3, 4	RD or WR high to ALE high	23	103	t _{CLCL} -40	t _{CLCL} +40	ns
Shift Regist	ter				0101	0101	
XLXL	5	Serial port clock cycle time ³	0.75		12t _{CLCL}		μs
QVXH	5	Output data setup to clock rising edge ³	492		10t _{CLCL} -133		ns
XHQX	5	Output data hold after clock rising edge ³	80		2t _{CLCL} -117		ns
XHDX	5	Input data hold after clock rising edge ³	0		0		ns
XHDX	5	Clock rising edge to input data valid ³		492	Ŭ	10t _{CLCL} -133	ns
XHDV External Cl							
	6	High time ³	20		20		ns
	6	Low time ³	20		20	toucu toucx	
	6	Rise time ³	20	20	20	t _{CLCL} – t _{CHCX} 20	ns
CLCH	U	Fall time ³		20		20	ns


AC ELECTRICAL CHARACTERISTICS^{1, 2}

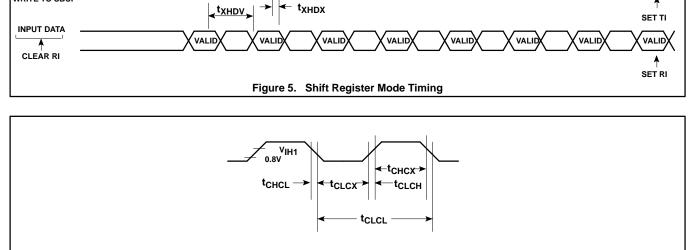
NOTES:

Parameters are valid over operating temperature range unless otherwise specified.
 Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.
 These values are characterized but not 100% production tested.


OM5232

A8-A15

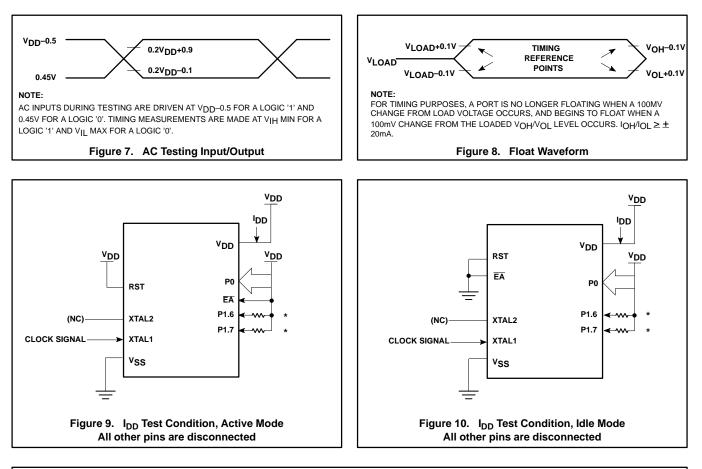
Figure 2. External Program Memory Read Cycle

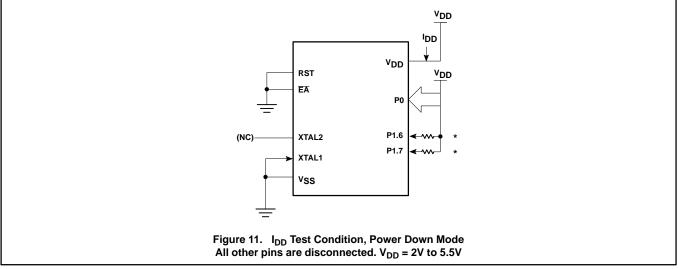

A8–A15

OUTPUT DATA WRITE TO SBUF

CMOS single-chip 8-bit microcontroller

ALE – t_{WHLH} – PSEN tLLWL twlwh WR t_{LLAX} -) - t_{whqx} tAVLL t_{QVWX} t_{DW} A0-A7 FROM RI OR DPL PORT 0 DATA OUT A0-A7 FROM PCL INSTR IN tAVWL PORT 2 A8-A15 FROM PCH P2.0-P2.7 OR A8-A15 FROM DPH Figure 4. External Data Memory Write Cycle INSTRUCTION 0 2 3 4 5 6 8 ALE tXLXL CLOCK − t_{XHQX} t_{QVXH}




Figure 6. External Clock Drive at XTAL1

OM5232

¥

OM5232

NOTE:

Ports 1.6 and 1.7 should be connected to V_{CC} through resistors of sufficiently high value such that the sink current into these pins does not exceed the I_{OL1} specification.