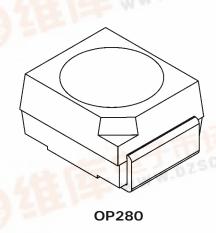
Infrared Light Emitting Diode in SMT Plastic Package

OP280

- Wide Beam Angle
- High Power
- Plastic Leadless Chip Carrier (PLCC-2)
- 880nm Wavelength


The OP280 is a GaAlAs infrared LEDs mounted in a plastic SMT package. The device flat lens window which allows a wide beam angle. This device is packaged in a plastic leadless chip carrier (PLCC-2) that is suitable for single device or array applications. The OP280 is mechanically and spectrally matched to the OP580 phototransistor.

Applications

- Non-Contact Position Sensing
- Datum detection

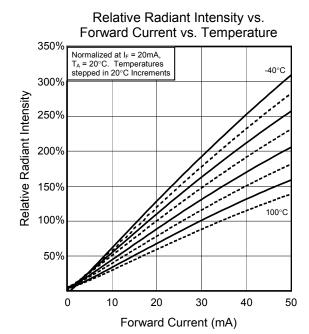
- Machine automation
- Optical encoders

RoHS

SMT Infrared LED OP280

Absolute Maximum Ratings T_A = 25° C unless otherwise noted

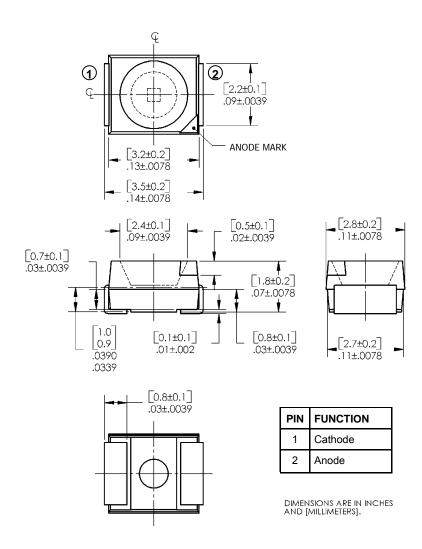
Storage Temperature Range	-40° C to +85° C
Operating Temperature Range	-25° C to +85° C
Lead Soldering Temperature	260° C ⁽¹⁾
Reverse Voltage	30 V
Continuous Forward Current	50 mA
Power Dissipation	130 mW ⁽²⁾

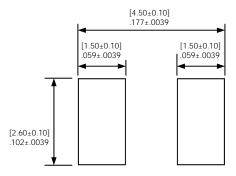

Notes:

- Solder time less than 5 seconds at temperature extreme.
- De-rate linearly at 2.17 mW/° C above 25° C.


Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence	0.5			mW/cm ²	I _F = 20mA ⁽³⁾
V _F	Forward Voltage			1.5	V	I _F = 20mA
I _R	Reverse Current			100	μΑ	V _R = 2.0V
λ_{P}	Peak Emission Wavelength		890		nm	I _F = 10mA
ӨнР	Emission Angle at Half Power Points		100		Deg.	I _F = 20mA
t _r , t _f	Rise and Fall Time			500	ns	I _{F(PEAK)} = 100mA, PW = 10μs, 10% D.C.


E_{e(APT)} is a measurement of the apertured radiant incidence upon a sensing area 0.081" (2.06mm) in diameter, perpendicular to and centered on the mechanical axis of the lens, and 0.590" (14.99mm) from the measurement surface. E_{e(APT)} is not necessarily uniform within the measured area.


Forward Voltage vs. Forward Current vs. Temperature

RECOMMENDED SOLDER PADS

